Skip to main content

Select Topics and Future Challenges in Discrete Geometry

  • Chapter
  • First Online:
Digital and Discrete Geometry
  • 1709 Accesses

Abstract

Digital geometry is a relatively new research area. It is difficult to show the characteristics of digital geometry as a well-developed theory. On the other hand, discrete geometry used to focus on combinatorial methods such as simplicial decomposition, counting, and tillings. However, it is now also much interested in differential geometry methods. Many new problems related to digital and discrete geometry are have been discovered and have raised interests from various different research disciplinary areas. In order to synthesize some features, this chapter mainly deals with methodology issues of digital and discrete geometry in terms of future studies. We begin with detailed proofs of two basic theorems in digital and discrete geometry. In these proofs, we show the power of the digital and discrete methods in geometry. Then, we focus on future problems in BigData and the data sciences, including what digital methods can do in random algorithms, manifold learning, and advanced geometric measurements. We also present some questions for graduate students and other researchers to think about.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We switched the meanings of the partial graph with the subgraph from the author’s previous publication. See definition in Chap. 2.

References

  1. A. Barvinok, Integer points in polyhedra. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zrich, 2008.

    Google Scholar 

  2. L. Chen, The λ-connected segmentation and the optimal algorithm for split-and-merge segmentation, Chinese J. Computers, 14(2), pp. 321–331, 1991.

    Google Scholar 

  3. L. Chen, Generalized discrete object tracking algorithms and implementations,” In Melter, Wu, and Latecki ed, Vision Geometry VI, SPIE Vol. 3168, pp. 184–195, 1997.

    Google Scholar 

  4. L. Chen “Point spaces and raster spaces in digital geometry and topology,” in Melter, Wu, and Latecki ed, Vision Geometry VII, SPIE Proc. 3454, pp. 145–155, 1998.

    Google Scholar 

  5. L. Chen, Discrete Surfaces and Manifolds, SP Computing, Rockville, 2004.

    Google Scholar 

  6. L. Chen, Digital Functions and Data Reconstruction, Springer, NY, 2013.

    Google Scholar 

  7. L. Chen, L. Chen, Note on the discrete Jordan curve theorem, Vision Geometry VIII, Proc. SPIE Vol. 3811, 1999. pp. 82–94. Its revised version is at http://arxiv.org/abs/1312.0316

  8. L. Chen and J. Zhang, Digital manifolds: A Intuitive Definition and Some Properties, The Proc. of the Second ACM/SIGGRAPH Symposium on Solid Modeling and Applications, pp. 459–460, Montreal, 1993.

    Google Scholar 

  9. L. Chen and J. Zhang, “Classification of Simple digital Surface Points and A Global Theorem for Simple Closed Surfaces”, in Melter and Wu ed, Vision Geometry II, SPIE Vol 2060, pp. 179–188, 1993.

    Google Scholar 

  10. L. Chen, H. Cooley and J. Zhang, The equivalence between two definitions of digital surfaces, Information Sciences, Vol 115, pp. 201–220, 1999.

    Google Scholar 

  11. L Chen, H. Zhu and W. Cui, Very Fast Region-Connected Segmentation for Spatial Data: Case Study, IEEE conference on System, Man, and Cybernetics, 2006.

    Google Scholar 

  12. T. H. Cormen, C.E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, 1993.

    Google Scholar 

  13. J.-F. Dufourd, An intuitionistic proof of a discrete form of the Jordan curve theorem formalized in Coq with combinatorial hypermaps, Journal of Automated Reasoning 43 (1) (2009) 19–51.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Fortune and J. Hopcroft, A note on Rabin’s nearest-neighbor algorithm, Inform. Process. Lett. No 8, pp. 20–23, 1979

    Google Scholar 

  15. Gromov, M. Systoles and intersystolic inequalities. (English, French summary) Actes de la Table Ronde de Gomtrie Diffrentielle (Luminy, 1992), 291-362, Smin. Congr., 1, Soc. Math. France, Paris, 1996.

    Google Scholar 

  16. M. Guillemard, Some Geometrical and Topological Aspects of Dimensionality Reduction in Signal Analysis. PhD thesis, University of Hamburg, 2011, ftp://ftp.math.tu-berlin.de/pub/numerik/guillem/prj2/mgyDiss.pdf.

  17. Q. Han, Qing, J-X Hong (2006), Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, American Mathematical Society, 2006.

    Google Scholar 

  18. M. Hardt and A. Moitra. Algorithms and hardness for robust subspace recovery. In Proc.26 COLT, pages 354–375. JMLR, 2013.

    Google Scholar 

  19. G.T. Herman, Geometry of Digital Spaces, Birkhauser, Boston, 1998.

    MATH  Google Scholar 

  20. M.G. Katz, M (2007), Systolic geometry and topology, Mathematical Surveys and Monographs, 137, Providence, R.I.: American Mathematical Society, pp. 19,

    Book  Google Scholar 

  21. S. Khot and D. Moshkovitz. Hardness of approximately solving linear equations over the reals. STOC, pages 413–420, 2011.

    Google Scholar 

  22. J. Kleinberg, E. Tardos. Algorithm Design. Addison Wesley, 2005.

    Google Scholar 

  23. R. Klette, and A. Rosenfeld Digital Geometry: Geometric Methods for Digital Image Analysis. Morgan Kaufmann, 2004.

    Google Scholar 

  24. S. Lefschetz “Introduction to Topology,” Princeton University Press New Jersey, 1949.

    MATH  Google Scholar 

  25. T. Lin and H. Zha, Riemannian Manifold Learning, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 5, pp. 796–809, May 2008.

    Google Scholar 

  26. R. Lipton, Rabin Flips a Coin, http://rjlipton.wordpress.com/2009/03/01/rabin-flips-a-coin/

  27. D. G. Morgenthaler and A. Rosenfeld, “Surfaces in three-dimensional images,” Inform. and Control, Vol 51, pp. 227–247, 1981.

    Google Scholar 

  28. M. Newman, Elements of the Topology of Plane Sets of Points, Cambridge, London, 1954.

    Google Scholar 

  29. R. Osserman, The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (6): 1182–1238. 1978.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. M., Pu, Some inequalities in certain nonorientable Riemannian manifolds. Pacific J. Math. 2 (1952), 55–71.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. O. Rabin, Probabilistic algorithms, in Algorithms and Complexity: New Directions and Recent Results J. F. Traub, Ed., Academic Press, New York, 1976, pp. 21–39

    Google Scholar 

  32. M. Soltanolkotabi and E. Candes. A geometric analysis of subspace clustering with outliers. Ann. of Statistics. pp. 2195–2238, 2012.

    Google Scholar 

  33. S. Suri, The closest pair problem, University of California at Santa Barbara, http://www.cs.ucsb.edu/suri/cs235/ClosestPair.pdf

  34. W. T. Tutte, Graph Theory, Addison-Wesley, Reading, Mass., 1984.

    MATH  Google Scholar 

  35. O. Veblen, Theory on Plane Curves in Non-Metrical Analysis Situs, Transactions of the American Mathematical Society 6 (1): 83–98, 1905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, L. (2014). Select Topics and Future Challenges in Discrete Geometry. In: Digital and Discrete Geometry. Springer, Cham. https://doi.org/10.1007/978-3-319-12099-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12099-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12098-0

  • Online ISBN: 978-3-319-12099-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics