Advertisement

Applying Triadic FCA in Studying Web Usage Behaviors

  • Sanda Dragoş
  • Diana Haliţă
  • Christian Săcărea
  • Diana Troancă
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8793)

Abstract

Formal Concept Analysis (FCA) is well known for its features addressing Knowledge Processing and Knowledge Representation as well as offering a reasoning support for understanding the structure of large collections of information and knowledge. This paper aims to introduce a triadic approach to the study of web usage behavior. User dynamics is captured in logs, containing a large variety of data. These logs are then studied using Triadic FCA, the knowledge content being expressed as a collection of triconcepts. Temporal aspects of web usage behavior are considered as conditions in tricontexts, being then expressed as modi in triconcepts. The gained knowledge is then visualized using CIRCOS, a software package for visualizing data and information in a circular layout. This circular layout emphasizes patterns of user dynamics.

Keywords

Formal Concept Analysis User Dynamic Conceptual Landscape Circular Layout Triadic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wille, R.: Conceptual Landscapes of Knowledge: a Pragmatic Paradigm for Knowledge Processing. In: Gaul, W., Locarek-Junge, H. (eds.) Classification in the Information Age, Proceedings of the 22nd Annual Gfki Conference, Dresden, March 4-6, pp. 344–356 (1998)Google Scholar
  2. 2.
    Wille, R.: Methods of Conceptual Knowledge Processing. In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 1–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Kosala, R., Blockeel, H.: Web Mining Research: A survey. ACM SIGKKD Explorations Newsletter 2, 1–15 (2000)CrossRefGoogle Scholar
  6. 6.
    Dragoş S.: Why Google Analytics Can Not Be Used For Educational Web Content. In: Abraham A. et al (eds.) 7th International Conference on Next Generation Web Services Practices (NWeSP), pp. 113–118. IEEE (2011)Google Scholar
  7. 7.
    Spiliopoulou, M., Faulstich, L.C.: WUM: A Tool for Web Utilization Analysis. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 184–203. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Srivastava, J., Cooley, R., Deshpande, M., Pang-Ning, T.: Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. ACM SIGKDD Explorations Newsletter 1(2), 12–23 (2000)CrossRefGoogle Scholar
  9. 9.
    Eirinaki, M., Vazirgiannis, M.: Web Mining for Web Personalization. ACM Transactions on Internet Technology (TOIT) 3(1), 1–27 (2003)CrossRefGoogle Scholar
  10. 10.
    Romero, C., Ventura, S., Zafra, A., Bra, P.D.: Applying Web Usage Mining for Personalizing Hyperlinks in Web-Based Adaptive Educational Systems. Computers & Education 53, 828–840 (2009)CrossRefGoogle Scholar
  11. 11.
    Romero, C., Espejo, P.G., Zafra, A., Romero, J.R., Ventura, S.: Web Usage Mining for Predicting Final Marks of Students That Use Moodle Courses. Computer Applications in Engineering Education 21, 135–146 (2013)CrossRefGoogle Scholar
  12. 12.
    Dragoş, S.: PULSE Extended. In: The Fourth International Conference on Internet and Web Applications and Services, Venice/Mestre, Italy, pp. 510–515. IEEE Computer Society (May 2009)Google Scholar
  13. 13.
    Dragoş, S., Săcărea, C.: Analysing the Usage of Pulse Portal with Formal Concept Analysis. In: Studia Universitatis Babes-Bolyai Series Informatica, vol. LVII, pp. 65–75 (2012)Google Scholar
  14. 14.
    Jaeschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias - An Algorithm for Mining Iceberg Trilattices. In: Proceedings of the IEEE International Conference on Data Mining, Hong Kong, pp. 907–911. IEEE Computer Society (2006)Google Scholar
  15. 15.
    Circos, a circular visualization tool, http://www.circos.ca

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sanda Dragoş
    • 1
  • Diana Haliţă
    • 1
  • Christian Săcărea
    • 1
  • Diana Troancă
    • 1
  1. 1.Department of Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations