Abstract
Our research project develops an intranet search engine with concept-browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text analytics engine extracts knowledge structures from data inductively, and the enterprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data records. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept-browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.
Keywords
- knowledge technology
- knowledge engineering
- concept extraction
- enterprise ontology
- enterprise search
- concept browsing
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Margolis, E., Laurence, S.: Concepts. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2014)
Guarino, N.: Formal Ontology, Conceptual Analysis and Knowledge Representation. Int. J. Hum-Comput. Stud. 43, 625–640 (1995)
Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., Loos, P., Mertens, P., Oberweis, A., Sinz, E.J.: Memorandum on design-oriented information systems research. Eur. J. Inf. Syst. 20, 7–10 (2010)
Preece, A., Flett, A., Sleeman, D., Curry, D., Meany, N., Perry, P.: Better knowledge management through knowledge engineering. IEEE Intell. Syst. 16, 36–43 (2001)
Shadbolt, N.: Knowledge Technologies. Ingenia R. Acad. Eng. 58–61 (2001)
Milton, N., Shadbolt, N., Cottam, H., Hammersley, M.: Towards a knowledge technology for knowledge management. Int. J. Hum.-Comput. Stud. 51, 615–641 (1999)
Yacci, M.: The Knowledge Warehouses Reusing Knowledge Components. Perform. Improv. Q. 12, 132–140 (1999)
Frisch, A.M.: Knowledge Retrieval as Specialized Inference. Ph.D Thesis, University of Rochester (1986)
Nemati, H.R., Steiger, D.M., Iyer, L.S., Herschel, R.T.: Knowledge warehouse: an architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decis. Support Syst. 33, 143–161 (2002)
Nilsson, M., Palmér, M.: Conzilla - Towards a Concept Browser (No. CID-53, TRITA-NA-D9911). Stockholm: Centre for User Oriented IT Design, Dept. Computing Science, Royal Institute of Technology KTH (1999)
Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press (2001)
Eysenck, M.W., Keane, M.T.: Cognitive Psychology: A Student’s Handbook, 4th edn. Psychology Press (2000)
McClelland, J.L., Cleeremans, A.: Consciousness and Connectionist Models. In: McClelland, J.L., Bayne, T., and Wilken, P. (eds.) The Oxford Companion to Consciousness. Oxford University Press (2009)
Cudré-Mauroux, P., Liu, L., Özsu, M.T.: Emergent Semantics. Encyclopedia of Database Systems, pp. 982–985
Portmann, E., Pedrycz, W.: Fuzzy Web Knowledge Aggregation, Representation, and Reasoning for Online Privacy and Reputation Management. In: Papageorgiou, E.I. (ed.) Fuzzy Cognitive Maps for Applied Sciences and Engineering. ISRL, vol. 54, pp. 89–105. Springer, Heidelberg (2014)
Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intell. Syst. 16, 72–79 (2001)
Parameswaran, A., Garcia-Molina, H., Rajaraman, A.: Towards the Web of Concepts: Extracting Concepts from Large Datasets. Proc VLDB Endow. 3, 566–577 (2010)
Deerwester, S.: Improving Information Retrieval with Latent Semantic Indexing. Presented at the Proceedings of the 51st ASIS Annual Meeting (ASIS 1988) (October 23, 1988)
Ganter, B., Bock, H.H.: Software for formal concept analysis. Classification as a tool of research, pp. 161–167. North-Holland, Amsterdam (1986)
Portmann, E., Kaufmann, M.A., Graf, C.: A Distributed, Semiotic-inductive, and Human-oriented Approach to Web-scale Knowledge Retrieval. In: Proceedings of the 2012 International Workshop on Web-scale Knowledge Representation, Retrieval and Reasoning, pp. 1–8. ACM, New York (2012)
Hinkelmann, K., Merelli, E., Thönssen, B.: The Role of Content and Context in Enterprise Repositories. Presented at the 2nd International Workshop on Advanced Enterprise Architecture and Repositories (AER) (2010)
Thönssen, B.: An Enterprise Ontology Building the Bases for Automatic Metadata Generation. In: Sánchez-Alonso, S., Athanasiadis, I.N. (eds.) MTSR 2010. CCIS, vol. 108, pp. 195–210. Springer, Heidelberg (2010)
The Open Group: ArchiMate 2.1 Specification, http://pubs.opengroup.org/architecture/archimate2-doc/
Martin, A., Emmenegger, S., Wilke, G.: Integrating an enterprise architecture ontology in a case-based reasoning approach for project knowledge. In: Proceedings of the Enterprise Systems Conference, ES (2013)
Thönssen, B.: Automatic, Format-independent Generation of Metadata for Documents Based on Semantically Enriched Context Information. Ph.D Thesis, University of Camarino (2013)
Ichikawa, J.J., Steup, M.: The Analysis of Knowledge. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2014)
Hawthorne, J.: Inductive Logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2012)
Shi, L., Griffiths, T.L.: Neural implementation of hierarchical bayesian inference by importance sampling. Advances in Neural Information Processing Systems 22, 1669–1677 (2009)
Kaufmann, M.: Inductive Fuzzy Classification in Marketing Analytics. Springer (2014)
The Apache Software Foundation: Apache Lucene - Apache Lucene Core, http://lucene.apache.org/core/
Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM, New York (1993)
Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)
Hilbert, M., López, P.: The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 332, 60–65 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kaufmann, M., Wilke, G., Portmann, E., Hinkelmann, K. (2014). Combining Bottom-Up and Top-Down Generation of Interactive Knowledge Maps for Enterprise Search. In: Buchmann, R., Kifor, C.V., Yu, J. (eds) Knowledge Science, Engineering and Management. KSEM 2014. Lecture Notes in Computer Science(), vol 8793. Springer, Cham. https://doi.org/10.1007/978-3-319-12096-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-12096-6_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12095-9
Online ISBN: 978-3-319-12096-6
eBook Packages: Computer ScienceComputer Science (R0)