A Survey of Evaluation in Music Genre Recognition

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8382)

Abstract

Much work is focused upon music genre recognition (MGR) from audio recordings, symbolic data, and other modalities. While reviews have been written of some of this work before, no survey has been made of the approaches to evaluating approaches to MGR. This paper compiles a bibliography of work in MGR, and analyzes three aspects of evaluation: experimental designs, datasets, and figures of merit.

References

  1. 1.
    Abeßer, J., Dittmar, C., Großmann, H.: Automatic genre and artist classification by analyzing improvised solo parts from musical recordings. In: Proceedings of the Audio Mostly Conference, Piteå, Sweden, pp. 127–131 (2008)Google Scholar
  2. 2.
    Abeßer, J., Lukashevich, H.M., Dittmar, C., Schuller, G.: Genre classification using bass-related high-level features and playing styles. In: Proceedings of the ISMIR, pp. 453–458 (2009)Google Scholar
  3. 3.
    Abeßer, J., Lukashevich, H., Dittmar, C., Bräuer, P., Karuse, F.: Rule-based classification of musical genres from a global cultural background. In: Proceedings of the CMMR, pp. 317–336 (2010)Google Scholar
  4. 4.
    Abeßer, J., Bräuer, P., Lukashevich, H.M., Schuller, G.: Bass playing style detection based on high-level features and pattern similarity. In: Proceedings of the ISMIR, pp. 93–98 (2010)Google Scholar
  5. 5.
    Abeßer, J., Lukashevich, H., Bräuer, P.: Classification of music genres based on repetitive basslines. J. New Music Res. 41(3), 239–257 (2012)Google Scholar
  6. 6.
    Ahonen, T.E.: Compressing lists for audio classification. In: Proceedings of the International Workshop on Machine Learning and Music. MML ’10, pp. 45–48. ACM, New York (2010)Google Scholar
  7. 7.
    Ahrendt, P., Meng, A., Larsen, J.: Decision time horizon for music genre classification using short-time features. In: Proceedings of the EUSIPCO (2004)Google Scholar
  8. 8.
    Ahrendt, P., Larsen, J., Goutte, C.: Co-occurrence models in music genre classification. In: Proceedings of the IEEE Workshop Machine Learning Signal Process, Sept 2005Google Scholar
  9. 9.
    Ahrendt, P.: Music genre classification systems - a computational approach. Ph.D. thesis, Technical University of Denmark (2006)Google Scholar
  10. 10.
    Almoosa, N., Bae, S.H., Juang, B.H.: Feature extraction by incremental parsing for music indexing. In: Proceedings of the ICASSP, pp. 2410–2413, Mar 2010Google Scholar
  11. 11.
    Anan, Y., Hatano, K., Bannai, H., Takeda, M.: Music genre classification using similarity functions. In: Proceedings of the ISMIR, pp. 693–698 (2011)Google Scholar
  12. 12.
    Andén, J., Mallat, S.: Multiscale scattering for audio classification. In: Proceedings of the ISMIR, pp. 657–662 (2011)Google Scholar
  13. 13.
    Anglade, A., Ramirez, R., Dixon, S.: Genre classification using harmony rules induced from automatic chord transcriptions. In: Proceedings of the ISMIR (2009)Google Scholar
  14. 14.
    Anglade, A., Ramirez, R., Dixon, S.: First-order logic classification models of musical genres based on harmony. In: Proceedings of the SMC (2009)Google Scholar
  15. 15.
    Anglade, A., Benetos, E., Mauch, M., Dixon, S.: Improving music genre classification using automatically induced harmony rules. J. New Music Res. 39(4), 349–361 (2010)Google Scholar
  16. 16.
    Annesi, P., Basili, R., Gitto, R., Moschitti, A., Petitti, R.: Audio feature engineering for automatic music genre classification. In: Proceedings of the Recherche d’Information Assistée par Ordinateur, Pittsburgh, Pennsylvania, pp. 702–711 (2007)Google Scholar
  17. 17.
    Arabi, A.F., Lu, G.: Enhanced polyphonic music genre classification using high level features. In: IEEE International Conference on Signal and Image Processing Applications (2009)Google Scholar
  18. 18.
    Arenas, J., Larsen, J., Hansen, L., Meng, A.: Optimal filtering of dynamics in short-time features for music organization. In: Proceedings of the ISMIR (2006)Google Scholar
  19. 19.
    Ariyaratne, H., Zhang, D.: A novel automatic hierarchical approach to music genre classification. In: Proceedings of the ICME, pp. 564–569, July 2012Google Scholar
  20. 20.
    Aryafar, K., Shokoufandeh, A.: Music genre classification using explicit semantic analysis. In: Proceedings of the ACM MIRUM Workshop, Scottsdale, AZ, USA, pp. 33–38, Nov 2011Google Scholar
  21. 21.
    Aryafar, K., Jafarpour, S., Shokoufandeh, A.: Music genre classification using sparsity-eager support vector machines. Technical report, Drexel University (2012)Google Scholar
  22. 22.
    Aucouturier, J.J., Pachet, F.: Music similarity measures: what’s the use? In: Proceedings of the ISMIR, Paris, France, Oct 2002Google Scholar
  23. 23.
    Aucouturier, J.J., Pachet, F.: Representing music genre: a state of the art. J. New Music Res. 32(1), 83–93 (2003)Google Scholar
  24. 24.
    Aucouturier, J.J., Pampalk, E.: Introduction - from genres to tags: a little epistemology of music information retrieval research. J. New Music Res. 37(2), 87–92 (2008)Google Scholar
  25. 25.
    Aucouturier, J.J.: Sounds like teen spirit: computational insights into the grounding of everyday musical terms. In: Minett, J., Wang, W. (eds.) Language, Evolution and the Brain. Frontiers in Linguistic Series. Academia Sinica Press, Taipei (2009)Google Scholar
  26. 26.
    Backer, E., van Kranenburg, P.: On musical stylometry - a pattern recognition approach. Pattern Recogn. Lett. 26, 299–309 (2005)Google Scholar
  27. 27.
    Bağci, U., Erzin, E.: Automatic classification of musical genres using inter-genre similarity. IEEE Signal Proc. Lett. 14(8), 521–524 (2007)Google Scholar
  28. 28.
    Balkema, W.: Variable-size gaussian mixture models for music similarity measures. In: Proceedings of the ISMIR, pp. 491–494 (2007)Google Scholar
  29. 29.
    Balkema, W., van der Heijden, F.: Music playlist generation by assimilating GMMs into SOMs. Pattern Recogn. Lett. 31(1), 1396–1402 (2010)Google Scholar
  30. 30.
    Barbedo, J.G.A., Lopes, A.: Automatic genre classification of musical signals. EURASIP J. Adv. Signal Process. 2007, 1–12 (2007)MathSciNetGoogle Scholar
  31. 31.
    Barbedo, J.G.A., Lopes, A.: Automatic musical genre classification using a flexible approach. J. Audio Eng. Soc. 56(7/8), 560–568 (2008)Google Scholar
  32. 32.
    Barbieri, G., Esposti, M.D., Pachet, F., Roy, P.: Is there a relation between the syntax and the fitness of an audio feature? In: Proceedings of the ISMIR (2010)Google Scholar
  33. 33.
    Barreira, L., Cavaco, S., da Silva, J.: Unsupervised music genre classification with a model-based approach. In: Proceedings of the Portuguese Conference on Progress in Artificial Intelligence, pp. 268–281 (2011)Google Scholar
  34. 34.
    Basili, R., Serafini, A., Stellato, A.: Classification of musical genre: a machine learning approach. In: Proceedings of the ISMIR (2004)Google Scholar
  35. 35.
    Behun, K.: Image features in music style recognition. In: Proceedings of the Central European Seminar on Computer Graphics (2012)Google Scholar
  36. 36.
    Benetos, E., Kotropoulos, C.: A tensor-based approach for automatic music genre classification. In: Proceedings of the EUSIPCO, Lausanne, Switzerland (2008)Google Scholar
  37. 37.
    Benetos, E., Kotropoulos, C.: Non-negative tensor factorization applied to music genre classification. IEEE Trans. Audio Speech Lang. Process. 18(8), 1955–1967 (2010)Google Scholar
  38. 38.
    Bergstra, J., Casagrande, N., Erhan, D., Eck, D., Kégl, B.: Aggregate features and Adaboost for music classification. Mach. Learn. 65(2–3), 473–484 (2006)Google Scholar
  39. 39.
    Bergstra, J.: Algorithms for classifying recorded music by genre. Master’s thesis, Université de Montréal, Montréal, Canada, Aug 2006Google Scholar
  40. 40.
    Bergstra, J., Lacoste, A., Eck, D.: Predicting genre labels for artist using FreeDB. In: Proceedings of the ISMIR, pp. 85–88 (2006)Google Scholar
  41. 41.
    Bergstra, J., Mandel, M., Eck, D.: Scalable genre and tag prediction with spectral covariance. In: Proceedings of the ISMIR (2010)Google Scholar
  42. 42.
    Bertin-Mahieux, T., Weiss, R.J., Ellis, D.P.W.: Clustering beat-chroma patterns in a large music database. In: Proceedings of the ISMIR, Utrecht, Netherlands, Aug 2010Google Scholar
  43. 43.
    Bickerstaffe, A.C., Makalic, E.: MML classification of music genres. In: Gedeon, T.T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 1063–1071. Springer, Heidelberg (2003)Google Scholar
  44. 44.
    Bigerelle, M., Iost, A.: Fractal dimension and classification of music. Chaos Soliton. Fract. 11(14), 2179–2192 (2000)Google Scholar
  45. 45.
    Blume, H., Haller, M., Botteck, M., Theimer, W.: Perceptual feature based music classification - a DSP perspective for a new type of application. In: International Conference on Embedded Computer Systems (2008)Google Scholar
  46. 46.
    Bogdanov, D., Serra, J., Wack, N., Herrera, P., Serra, X.: Unifying low-level and high-level music similarity measures. IEEE Trans. Multimed. 13(4), 687–701 (2011)Google Scholar
  47. 47.
    Brecheisen, S., Kriegel, H.P., Kunath, P., Pryakhin, A.: Hierarchical genre classification for large music collections. In: Proceedings of the ICME, pp. 1385–1388, July 2006Google Scholar
  48. 48.
    Burred, J., Lerch, A.: A hierarchical approach to automatic musical genre classification. In: Proceedings of the DAFx, London, UK, Sept 2003Google Scholar
  49. 49.
    Burred, J.J., Lerch, A.: Hierarchical automatic audio signal classification. J. Audio Eng. Soc. 52(7), 724–739 (2004)Google Scholar
  50. 50.
    Burred, J.J., Peeters, G.: An adaptive system for music classification and tagging. In: International Workshop on Learning Semantics of Audio Signals (2009)Google Scholar
  51. 51.
    Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-based music information retrieval: current directions and future challenges. Proc. IEEE 96(4), 668–696 (2008)Google Scholar
  52. 52.
    Cataltepe, Z., Yaslan, Y., Sonmez, A.: Music genre classification using MIDI and audio features. EURASIP J. Adv. Signal Process. 2007, 1–8 (2007)Google Scholar
  53. 53.
    Chai, W., Vercoe, B.: Folk music classification using hidden Markov models. In: International Conference on Artificial Intelligence (2001)Google Scholar
  54. 54.
    Chang, L., Yu, X., Wan, W., Yao, J.: Research on fast music classification based on SVM in compressed domain. In: Proceedings of the ICALIP, pp. 638–642, July 2008Google Scholar
  55. 55.
    Chang, K., Jang, J.S.R., Iliopoulos, C.S.: Music genre classification via compressive sampling. In: Proceedings of the ISMIR, Amsterdam, The Netherlands, pp. 387–392, Aug 2010Google Scholar
  56. 56.
    Charami, M., Halloush, R., Tsekeridou, S.: Performance evaluation of TreeQ and LVQ classifiers for music information retrieval. In: Boukis, C., Pnevmatikakis, L., Polymenakos, L., et al. (eds.) Artificial Intelligence and Innovations 2007: From Theory to Applications. IFIP, vol. 247, pp. 331–338. Springer, Boston (2007)Google Scholar
  57. 57.
    Charbuillet, C., Tardieu, D., Peeters, G.: GMM supervector for content based music similarity. In: Proceedings of the DAFx, Paris, France, Sept 2011Google Scholar
  58. 58.
    Chase, A.: Music discriminations by carp “Cyprinus carpio”. Learn. Behav. 29, 336–353 (2001)Google Scholar
  59. 59.
    Chathuranga, D., Jayaratne, L.: Musical genre classification using ensemble of classifiers. In: Proceedings of the International Conference on Computational Intelligence, Modelling and Simulation, pp. 237–242, Sept 2012Google Scholar
  60. 60.
    Chen, K., Gao, S., Zhu, Y., Sun, Q.: Music genres classification using text categorization method. In: Proceedings of the IEEE Workshop on Multimedia Signal Processing, pp. 221–224, Oct 2006Google Scholar
  61. 61.
    Chen, G., Wang, T., Herrera, P.: Relevance feedback in an adaptive space with one-class SVM for content-based music retrieval. In: Proceedings of the ICALIP, pp. 1153–1158, July 2008Google Scholar
  62. 62.
    Chen, L., Wright, P., Nejdl, W.: Improving music genre classification using collaborative tagging data. In: International Conference on Web Search and Data Mining, Barcelona, Spain, Feb 2009Google Scholar
  63. 63.
    Chen, S.H., Chen, S.H.: Content-based music genre classification using timbral feature vectors and support vector machine. In: Proceedings of the International Conference on Interaction Sciences, pp. 1095–1101, Nov 2009Google Scholar
  64. 64.
    Chen, S.H., Chen, S.H., Guido, R.C.: Music genre classification algorithm based on dynamic frame analysis and support vector machine. In: IEEE International Symposium on Multimedia (2010)Google Scholar
  65. 65.
    Chew, E., Volk, A., Lee, C.Y.: Dance music classification using inner metric analysis. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Proceedings of the INFORMS Computing Society Conference, pp. 355–370. Kluwer, Dordrecht (2005)Google Scholar
  66. 66.
    Cilibrasi, R., Vitányi, P., de Wolf, R.: Algorithmic clustering of music based on string compression. Comput. Music J. 28(4), 49–67 (2004)Google Scholar
  67. 67.
    Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1523–1545 (2005)MathSciNetMATHGoogle Scholar
  68. 68.
    Collins, N.: Influence in early electronic dance music: an audio content analysis investigation. In: Proceedings of the ISMIR (2012)Google Scholar
  69. 69.
    Conklin, D.: Melodic analysis with segment classes. Mach. Learn. 65, 349–360 (2006)Google Scholar
  70. 70.
    Conklin, D.: Melody classification using patterns. In: Proceedings of the International Workshop on Machine Learning and Music, pp. 37–41 (2009)Google Scholar
  71. 71.
    Cornelis, O., Lesaffre, M., Moelants, D., Leman, M.: Access to ethnic music: advances and perspectives in content-based music information retrieval. Signal Process. 90(4), 1008–1031 (2010)MATHGoogle Scholar
  72. 72.
    Correa, D.C., Saito, J.H., da Costa, L.F.: Musical genres: beating to the rhythms of different drums. New. J. Phys. 12(5), 053030 (2010)Google Scholar
  73. 73.
    Costa, C.H.L., Valle Jr., J.D., Koerich, A.L.: Automatic classification of audio data. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 562–567 (2004)Google Scholar
  74. 74.
    Costa, Y.M.G., Oliveira, L.S., Koerich, A.L., Gouyon, F.: Music genre recognition using spectrograms. In: Proceedings of the International Conference on Systems, Signals and Image Processing (2011)Google Scholar
  75. 75.
    Costa, Y., Oliveira, L., Koerich, A., Gouyon, F., Martins, J.: Music genre classification using LBP textural features. Signal Process. 92(11), 2723–2737 (2012)Google Scholar
  76. 76.
    Costa, Y.M.G., Oliveira, L.S., Koerich, A.L., Gouyon, F.: Comparing textural features for music genre classification. In: Proceedings of the IEEE World Congress on Computational Intelligence, June 2012Google Scholar
  77. 77.
    Craft, A., Wiggins, G.A., Crawform, T.: How many beans make five? The consensus problem in music-genre classification and a new evaluation method for single-genre categorisation systems. In: Proceedings of the ISMIR (2007)Google Scholar
  78. 78.
    Craft, A.: The role of culture in the music genre classification task: human behaviour and its effect on methodology and evaluation. Technical report, Queen Mary University of London, Nov 2007Google Scholar
  79. 79.
    Crump, M.: A principal components approach to the perception of musical style. Master’s thesis, University of Lethbridge (2002)Google Scholar
  80. 80.
    Cruz-Alcáza, P.P., Vidal-Ruiz, E.: Modeling musical style using grammatical inference techniques: a tool for classifying and generating melodies. In: Proceedings of the WEDELMUSIC, pp. 77–84, Sept 2003Google Scholar
  81. 81.
    Cruz-Alcázar, P.P., Vidal-Ruiz, E., Pérez-Cortés, J.C.: Musical style identification using grammatical inference: the encoding problem. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 375–382. Springer, Heidelberg (2003)Google Scholar
  82. 82.
    Cruz-Alcáza, P.P., Vidal-Ruiz, E.: Two grammatical inference applications in music processing. Appl. Artif. Intell. 22(1/2), 53–76 (2008)Google Scholar
  83. 83.
    Dannenberg, R.B., Thom, B., Watson, D.: A machine learning approach to musical style recognition. In: Proceedings of the ICMC, pp. 344–347 (1997)Google Scholar
  84. 84.
    Dannenberg, R., Foote, J., Tzanetakis, G., Weare, C.: Panel: new directions in music information retrieval. In: Proceedings of the ICMC (2001)Google Scholar
  85. 85.
    Dannenberg, R.B.: Style in music. In: Argamon, S., Burns, K., Dubnov, S. (eds.) The Structure of Style, pp. 45–57. Springer, Heidelberg (2010)Google Scholar
  86. 86.
    DeCoro, C., Barutcuoglu, S., Fiebrink, R.: Bayesian aggregation for hierarchical genre classification. In: Proceedings of the ISMIR (2007)Google Scholar
  87. 87.
    Dehghani, M., Lovett, A.M.: Efficient genre classification using qualitative representations. In: Proceedings of the ISMIR, pp. 353–354 (2006)Google Scholar
  88. 88.
    Dellandrea, E., Harb, H., Chen, L.: Zipf, neural networks and SVM for musical genre classification. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, pp. 57–62, Dec 2005Google Scholar
  89. 89.
    Deshpande, H., Singh, R., Nam, U.: Classification of music signals in the visual domain. In: Proceedings of the DAFx, Limerick, Ireland, Dec 2001Google Scholar
  90. 90.
    Dieleman, S., Brakel, P., Schrauwen, B.: Audio-based music classification with a pretrained convolutional network. In: Proceedings of the ISMIR (2011)Google Scholar
  91. 91.
    Diodati, P., Piazza, S.: Different amplitude and time distribution of the sound of light and classical music. Eur. Phys. J. B - Condens. Matter Complex Syst. 17, 143–145 (2000)Google Scholar
  92. 92.
    Dixon, S., Pampalk, E., Widmer, G.: Classification of dance music by periodicity patterns. In: Proceedings of the ISMIR (2003)Google Scholar
  93. 93.
    Dixon, S., Gouyon, F., Widmer, G.: Towards characterisation of music via rhythmic patterns. In: Proceedings of the ISMIR, Barcelona, Spain, pp. 509–517 (2004)Google Scholar
  94. 94.
    Dixon, S., Mauch, M., Anglade, A.: Probabilistic and logic-based modelling of harmony. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2010. LNCS, vol. 6684, pp. 1–19. Springer, Heidelberg (2011)Google Scholar
  95. 95.
    Dor, O., Reich, Y.: An evaluation of musical score characteristics for automatic classification of composers. Comput. Music J. 35(3), 86–97 (2011)Google Scholar
  96. 96.
    Doraisamy, S., Golzari, S., Norowi, N.M., Sulaiman, M.N.B., Udzir, N.I.: A study on feature selection and classification techniques for automatic genre classification of traditional Malay music. In: Proceedings of the ISMIR, Philadelphia, PA (2008)Google Scholar
  97. 97.
    Doraisamy, S., Golzari, S.: Automatic musical genre classification and artificial immune recognition system. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 390–402. Springer, Heidelberg (2010)Google Scholar
  98. 98.
    Doudpota, S.M., Guha, S.: Mining movies for song sequences with video based music genre identification system. Int. J. Info. Process. Manag. 49(2), 529–544 (2013)Google Scholar
  99. 99.
    Downie, J., Ehmann, A., Tcheng, D.: Real-time genre classification for music digital libraries. In: Proceedings of the Joint ACM/IEEE Conference on Digital Libraries, p. 377, June 2005Google Scholar
  100. 100.
    Downie, J.S.: The music information retrieval evaluation exchange (2005–2007): a window into music information retrieval research. Acoust. Sci. Technol. 29(4), 247–255 (2008)Google Scholar
  101. 101.
    Downie, J.S., Ehmann, A.F., Bay, M., Jones, M.C.: The music information retrieval evaluation exchange: some observations and insights. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 93–115. Springer, Heidelberg (2010)Google Scholar
  102. 102.
    Draman, N.A., Wilson, C., Ling, S.: Modified AIS-based classifier for music genre classification. In: Proceedings of the ISMIR, pp. 369–374 (2010)Google Scholar
  103. 103.
    Draman, N.A., Ahmad, S., Muda, A.K.: Recognizing patterns of music signals to songs classification using modified AIS-based classifier. In: Zain, J.M., Wan Mohd, W.M., El-Qawasmeh, E. (eds.) ICSECS 2011, Part II. CCIS, vol. 180, pp. 724–737. Springer, Heidelberg (2011)Google Scholar
  104. 104.
    Dunker, P., Dittmar, C., Begau, A., Nowak, S., Gruhne, M.: Semantic high-level features for automated cross-modal slideshow generation. In: Proceedings of the Content-Based Multimedia Indexing, pp. 144–149 (2009)Google Scholar
  105. 105.
    Esmaili, S., Krishnan, S., Raahemifar, K.: Content based audio classification and retrieval using joint time-frequency analysis. In: Proceedings of the ICASSP, vol. 5, pp. 665–668 (2004)Google Scholar
  106. 106.
    Ezzaidi, H., Rouat, J.: Comparison of the statistical and information theory measures: Application to automatic musical genre classification. In: Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, pp. 241–246, Aug 2007Google Scholar
  107. 107.
    Ezzaidi, H., Bahoura, M., Rouat, J.: Taxonomy of musical genres. In: International Conference on Signal Image Technology and Internet Based Systems (2009)Google Scholar
  108. 108.
    Fadeev, A., Missaoui, O., Frigui, H.: Dominant audio descriptors for audio classification and retrieval. In: Proceedings of the ICMLA, Louisville, KY, USA, pp. 75–78, Dec 2009Google Scholar
  109. 109.
    Feng, Y., Dou, H., Qian, Y.: A study of audio classification on using different feature schemes with three classifiers. In: Proceedings of the International Conference on Information, Networking, Automation, pp. 298–302 (2010)Google Scholar
  110. 110.
    Fernández, F., Chávez, F., Alcala, R., Herrera, F.: Musical genre classification by means of fuzzy rule-based systems: a preliminary approach. In: IEEE Congress on Evolutionary Computation (2011)Google Scholar
  111. 111.
    Fernández, F., Chávez, F.: Fuzzy rule based system ensemble for music genre classification. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 84–95. Springer, Heidelberg (2012)Google Scholar
  112. 112.
    Fiebrink, R., Fujinaga, I.: Feature selection pitfalls and music classification. In: Proceedings of the ISMIR, Victoria, BC, Canada, pp. 340–341 (2006)Google Scholar
  113. 113.
    Fiebrink, R.: An exploration of feature selection as a tool for optimizing musical genre classification. Master’s thesis, McGill University, June 2006Google Scholar
  114. 114.
    Flexer, A., Pampalk, E., Widmer, G.: Hidden Markov models for spectral similarity of songs. In: Proceedings of the DAFx, Madrid, Spain, Sept 2005Google Scholar
  115. 115.
    Flexer, A., Gouyon, F., Dixon, S., Widmer, G.: Probabilistic combination of features for music classification. In: Proceedings of the ISMIR, Victoria, BC, Canada, pp. 111–114, Oct 2006Google Scholar
  116. 116.
    Flexer, A.: Statistical evaluation of music information retrieval experiments. J. New Music Res. 35(2), 113–120 (2006)Google Scholar
  117. 117.
    Flexer, A.: A closer look on artist filters for musical genre classification. In: Proceedings of the ISMIR, Vienna, Austria, Sept 2007Google Scholar
  118. 118.
    Flexer, A., Schnitzer, D.: Album and artist effects for audio similarity at the scale of the web. In: Proceedings of the SMC, Porto, Portugal, pp. 59–64, July 2009Google Scholar
  119. 119.
    Flexer, A., Schnitzer, D.: Effects of album and artist filters in audio similarity computed for very large music databases. Comput. Music J. 34(3), 20–28 (2010)Google Scholar
  120. 120.
    Frederico, G.: Classification into musical genres using a rhythmic kernel. In: Proceedings of the SMC (2004)Google Scholar
  121. 121.
    Fu, Z., Lu, G., Ting, K.M., Zhang, D.: Learning naive Bayes classifiers for music classification and retrieval. In: Proceedings of the ICPR, pp. 4589–4592 (2010)Google Scholar
  122. 122.
    Fu, Z., Lu, G., Ting, K.M., Zhang, D.: On feature combination for music classification. In: Proceedings of the International Workshop on Structural and Syntactic Pattern Recognition, pp. 453–462 (2010)Google Scholar
  123. 123.
    Fu, Z., Lu, G., Ting, K.M., Zhang, D.: A survey of audio-based music classification and annotation. IEEE Trans. Multimed. 13(2), 303–319 (2011)Google Scholar
  124. 124.
    Fu, Z., Lu, G., Ting, K.M., Zhang, D.: Music classification via the bag-of-features approach. Pattern Recogn. Lett. 32(14), 1768–1777 (2011)Google Scholar
  125. 125.
    García, J., Hernández, E., Meng, A., Hansen, L.K., Larsen, J.: Discovering music structure via similarity fusion. In: Proceedings of the Music, Brain and Cognition Workshop (2007)Google Scholar
  126. 126.
    García-García, D., Arenas-García, J., Parrado-Hernandez, E., de Maria, F.D.: Music genre classification using the temporal structure of songs. In: IEEE International Workshop on Machine Learning for Signal Processing, Kittilä, Finland, Aug–Sept 2010Google Scholar
  127. 127.
    García, A., Arenas, J., García, D., Parrado, E.: Music genre classification based on dynamical models. In: International Conference on Pattern Recognition Applications and Methods, pp. 250–256 (2012)Google Scholar
  128. 128.
    Gedik, A.C., Alpkocak, A.: Instrument independent musical genre classification using random 3000 ms segment. In: Savacı, F.A. (ed.) TAINN 2005. LNCS (LNAI), vol. 3949, pp. 149–157. Springer, Heidelberg (2006)Google Scholar
  129. 129.
    Genussov, M., Cohen, I.: Musical genre classification of audio signals using geometric methods. In: Proceedings of the EUSIPCO, Aalborg, Denmark, pp. 497–501, Aug 2010Google Scholar
  130. 130.
    Ghosal, A., Chakraborty, R., Dhara, B., Saha, S.: Instrumental/song classification of music signal using RANSAC. In: Proceedings of the International Conference on Electronics Computer Technology, pp. 269–272, Apr 2011Google Scholar
  131. 131.
    Gjerdingen, R.O., Perrott, D.: Scanning the dial: the rapid recognition of music genres. J. New Music Res. 37(2), 93–100 (2008)Google Scholar
  132. 132.
    Golub, S.: Classifying recorded music. Master’s thesis, University of Edinburgh, Edinburgh, Scotland, UK (2000)Google Scholar
  133. 133.
    Golzari, S., Doraisamy, S., Sulaiman, N., Udzir, N.I.: A hybrid approach to traditional Malay music genre classification: combining feature selection and artificial immune recognition system. In: Proceedings of the International Symposium on Information Technology, Aug 2008Google Scholar
  134. 134.
    Golzari, S., Doraisamy, S., Sulaiman, M.N.B., Udzir, N.I., Norowi, N.M.: Artificial immune recognition system with nonlinear resource allocation method and application to traditional Malay music genre classification. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 132–141. Springer, Heidelberg (2008)Google Scholar
  135. 135.
    Golzari, S., Doraisamy, S., Norowi, N.M., Sulaiman, M.N., Udzir, N.I.: A comprehensive study in benchmarking feature selection and classification approaches for traditional Malay music genre classification. In: Proceedings of Data Mining, pp. 71–77, July 2008Google Scholar
  136. 136.
    González, A., Granados, A., Camacho, D., de Borja Rodríguez, F.: Influence of music representation on compression-based clustering. In: Proceedings of the IEEE Congress on Evolutionary Computation (2010)Google Scholar
  137. 137.
    Goulart, A.J.H., Maciel, C.D., Guido, R.C., Paulo, K.C.S., da Silva, I.N.: Music genre classification based on entropy and fractal lacunarity. In: IEEE International Symposium on Multimedia (2011)Google Scholar
  138. 138.
    Goulart, A., Guido, R., Maciel, C.: Exploring different approaches for music genre classification. Egypt. Inf. J. 13(2), 59–63 (2012)Google Scholar
  139. 139.
    Gouyon, F., Dixon, S., Pampalk, E., Widmer, G.: Evaluating rhythmic descriptors for musical genre classification. In: Proceedings of the International Audio Engineering Society Conference, pp. 196–204 (2004)Google Scholar
  140. 140.
    Gouyon, F., Dixon, S.: Dance music classification: a tempo-based approach. In: Proceedings of the ISMIR, pp. 501–504 (2004)Google Scholar
  141. 141.
    Gouyon, F.: A computational approach to rhythm description – audio features for the computation of rhythm periodicity functions and their use in tempo induction and music content processing. Ph.D. thesis, Universitat Pompeu Fabra (2005)Google Scholar
  142. 142.
    Govaerts, S., Corthaut, N., Duval, E.: Using search engine for classification: does it still work? In: Proceedings of the IEEE International Symposium on Multimedia, pp. 483–488, Dec 2009Google Scholar
  143. 143.
    Grimaldi, M., Cunningham, P., Kokaram, A.: A wavelet packet representation of audio signals for music genre classification using different ensemble and feature selection techniques. In: Proceedings of the ACM Multimedia, pp. 102–108 (2003)Google Scholar
  144. 144.
    Grimaldi, M., Cunningham, P., Kokaram, A.: Discrete wavelet packet transform and ensembles of lazy and eager learners for music genre classification. Multimed. Syst. 11, 422–437 (2006)Google Scholar
  145. 145.
    Grosse, R., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariant sparse coding for audio classification. In: Proceedings of the Twenty-third Conference on Uncertainty in Artificial Intelligence (2007)Google Scholar
  146. 146.
    Guaus, E.: Audio content processing for automatic music genre classification: descriptors, databases, and classifiers. Ph.D. thesis, Universitat Pompeu Fabra, Barcelona, Spain (2009)Google Scholar
  147. 147.
    Hamel, P., Eck, D.: Learning features from music audio with deep belief networks. In: Proceedings of the ISMIR (2010)Google Scholar
  148. 148.
    Han, K.P., Park, Y.S., Jeon, S.G., Lee, G.C., Ha, Y.H.: Genre classification system of TV sound signals based on a spectrogram analysis. IEEE Trans. Consumer Elect. 44(1), 33–42 (1998)Google Scholar
  149. 149.
    Hansen, L.K., Ahrendt, P., Larsen, J.: Towards cognitive component analysis. In: Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning, Espoo, Finland, pp. 148–153, June 2005Google Scholar
  150. 150.
    Harb, H., Chen, L., Auloge, J.Y.: Mixture of experts for audio classification: an application to male female classification and musical genre recognition. In: Proceedings of the ICME (2004)Google Scholar
  151. 151.
    Harb, H., Chen, L.: A general audio classifier based on human perception motivated model. Multimed. Tools Appl. 34, 375–395 (2007)Google Scholar
  152. 152.
    Hartmann, K., Büchner, D., Berndt, A., Nürnberger, A., Lange, C.: Interactive data mining and machine learning techniques for musicology. In: Proceedings of the Conference on Interdisciplinary Musicology, pp. 1–8 (2007)Google Scholar
  153. 153.
    Hartmann, M.A.: Testing a spectral-based feature set for audio genre classification. Master’s thesis, University of Jyväskylä, June 2011Google Scholar
  154. 154.
    Heittola, T.: Automatic classification of music signals. Master’s thesis, Tampere University of Technology, Feb 2003Google Scholar
  155. 155.
    Henaff, M., Jarrett, K., Kavukcuoglu, K., LeCun, Y.: Unsupervised learning of sparse features for scalable audio classification. In: Proceedings of the ISMIR, Miami, FL, Oct 2011Google Scholar
  156. 156.
    de la Higuera, C., Piat, F., Tantini, F.: Learning stochastic finite automata for musical style recognition. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 345–346. Springer, Heidelberg (2006)Google Scholar
  157. 157.
    Hillewaere, R., Manderick, B., Conklin, D.: Global feature versus event models for folk song classification. In: Proceedings of the ISMIR, pp. 729–733 (2009)Google Scholar
  158. 158.
    Hillewaere, R., Manderick, B., Conklin, D.: Melodic models for polyphonic music classification. In: Proceedings of the International Workshop on Machine Learning and Music (2009)Google Scholar
  159. 159.
    Hillewaere, R., Manderick, B., Conklin, D.: String quartet classification with monophonic models. In: Proceedings of the ISMIR, pp. 537–542 (2010)Google Scholar
  160. 160.
    Hillewaere, R., Manderick, B., Conklin, D.: String methods for folk tune genre classification. In: Proceedings of the ISMIR (2012)Google Scholar
  161. 161.
    Holzapfel, A., Stylianou, Y.: A statistical approach to musical genre classification using non-negative matrix factorization. In: Proceedings of the ICASSP, pp. 693–696, Apr 2007Google Scholar
  162. 162.
    Holzapfel, A., Stylianou, Y.: Musical genre classification using nonnegative matrix factorization-based features. IEEE Trans. Audio Speech Lang. Process. 16(2), 424–434 (2008)Google Scholar
  163. 163.
    Holzapfel, A., Stylianou, Y.: Rhythmic similarity of music based on dynamic periodicity warping. In: Proceedings of the ICASSP, pp. 2217–2220 (2008)Google Scholar
  164. 164.
    Holzapfel, A., Stylianou, Y.: A scale based method for rhythmic similarity of music. In: Proceedings of the ICASSP, Taipei, Taiwan, pp. 317–320, Apr 2009Google Scholar
  165. 165.
    Homburg, H., Mierswa, I., Möller, B., Morik, K., Wurst, M.: A benchmark dataset for audio classification and clustering. In: Proceedings of the ISMIR, London, UK (2005)Google Scholar
  166. 166.
    Honingh, A., Bod, R.: Clustering and classification of music by interval categories. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 346–349. Springer, Heidelberg (2011)Google Scholar
  167. 167.
    Hsieh, C.T., Han, C.C., Lee, C.H., Fan, K.C.: Pattern classification using eigenspace projection. In: Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 154–157, July 2012Google Scholar
  168. 168.
    Hu, Y., Ogihara, M.: Genre classification for million song dataset using confidence-based classifiers combination. In: Proceedings of the ACM SIGIR, pp. 1083–1084. ACM, New York (2012)Google Scholar
  169. 169.
    Iñesta, J.M., Ponce de León, P.J., Heredia, J.L.: A ground-truth experiment on melody genre recognition in absence of timbre. In: Proceedings of the International Conference on Music Perception and Cognition, pp. 758–761 (2009)Google Scholar
  170. 170.
  171. 171.
    ISMIS: Genre results, Mar 2011. http://tunedit.org/challenge/music-retrieval
  172. 172.
    Jang, D., Jin, M., Yoo, C.D.: Music genre classification using novel features and a weighted voting method. In: Proceedings of the ICME, pp. 1377–1380 (2008)Google Scholar
  173. 173.
    Jennings, H., Ivanov, P., Martins, A., da Silva, P., Viswanathan, G.: Variance fluctuations in nonstationary time series: a comparative study of music genres. Phys. A: Stat. Theor. Phys. 336(3–4), 585–594 (2004)Google Scholar
  174. 174.
    Jensen, J., Christensen, M., Murthi, M., Jensen, S.: Evaluation of MFCC estimation techniques for music similarity. In: Proceedings of the EUSIPCO (2006)Google Scholar
  175. 175.
    Jensen, K.: Music genre classification using an auditory memory model. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K., Mohanty, S. (eds.) CMMR and FRSM 2011. LNCS, vol. 7172, pp. 79–88. Springer, Heidelberg (2012)Google Scholar
  176. 176.
    Jiang, D.N., L.-Lu, Zhang, H.J., Tao, J.H., Cai, L.H.: Music type classification by spectral contrast features. In: Proceedings of the ICME (2002)Google Scholar
  177. 177.
    Jin, X., Bie, R.: Random forest and PCA for self-organizing maps based automatic music genre discrimination. In: Proceedings of the Data Mining, pp. 414–417 (2006)Google Scholar
  178. 178.
    Lu, J., Wan, W., Yu, X., Li, C.: Music style classification using support vector machine. In: Proceedings of the International Conference on Wireless Communication and Mobile Computing, pp. 452–455, Dec 2009Google Scholar
  179. 179.
    Jothilakshmi, S., Kathiresan, N.: Automatic music genre classification for Indian music. In: Proceedings of the International Conference on Software and Computer Applications (2012)Google Scholar
  180. 180.
    Ju, H., Xu, J.X., VanDongen, A.M.J.: Classification of musical styles using liquid state machines. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–7 (2010)Google Scholar
  181. 181.
    Kaminskas, M., Ricci, F.: Contextual music information retrieval and recommendation: state of the art and challenges. Comput. Sci. Rev. 6(2–3), 89–119 (2012)MATHGoogle Scholar
  182. 182.
    Karkavitsas, G.V., Tsihrintzis, G.A.: Automatic music genre classification using hybrid genetic algorithms. In: Tsihrintzis, G.A., Virvou, M., Jain, L.C., Howlett, R.J. (eds.) IIMSS 2011. SIST, vol. 11, pp. 323–335. Springer, Heidelberg (2011)Google Scholar
  183. 183.
    Karkavitsas, G.V., Tsihrintzis, G.A.: Optimization of an automatic music genre classification system via hyper-entities. In: Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 449–452 (2012)Google Scholar
  184. 184.
    Karydis, I.: Symbolic music genre classification based on note pitch and duration. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 329–338. Springer, Heidelberg (2006)Google Scholar
  185. 185.
    Karydis, I., Nanopoulos, A., Manolopoulos, Y.: Symbolic musical genre classification based on repeating patterns. In: Proceedings of the ACM Workshop on Audio and Music Computing Multimedia, pp. 53–58 (2006)Google Scholar
  186. 186.
    Kim, H.G., Cho, J.M.: Car audio equalizer system using music classification and loudness compensation. In: Proceedings of the International Conference on ICT Convergence (2011)Google Scholar
  187. 187.
    Kini, S., Gulati, S., Rao, P.: Automatic genre classification of North Indian devotional music. In: National Conference on Communications (2011)Google Scholar
  188. 188.
    Kirss, P.: Audio based genre classification of electronic music. Master’s thesis, University of Jyväskylä, June 2007Google Scholar
  189. 189.
    Kitahara, T., Tsuchihashi, Y., Katayose, H.: Music genre classification and similarity calculation using bass-line features. In: Proceedings of the IEEE International Symposium on Multimedia, pp. 574–579, Dec 2008Google Scholar
  190. 190.
    Kobayakawa, M., Hoshi, M.: Musical genre classification of MPEG-4 Twin VQ audio data. In: Proceedings of the ICME (2011)Google Scholar
  191. 191.
    Koerich, A., Poitevin, C.: Combination of homogeneous classifiers for musical genre classification. In: IEEE International Conference on Systems, Man and Cybernetics, Oct 2005Google Scholar
  192. 192.
    Kofod, C., Ortiz-Arroyo, D.: Exploring the design space of symbolic music genre classification using data mining techniques. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, pp. 432–448, Dec 2008Google Scholar
  193. 193.
    Kosina, K.: Music genre recognition. Master’s thesis, Hagenberg Technical University, Hagenberg, Germany, June 2002Google Scholar
  194. 194.
    Kostek, B., Kupryjanow, A., Zwan, P., Jiang, W., Raś, Z.W., Wojnarski, M., Swietlicka, J.: Report of the ISMIS 2011 contest: music information retrieval. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 715–724. Springer, Heidelberg (2011)Google Scholar
  195. 195.
    Kotropoulos, C., Arce, G.R., Panagakis, Y.: Ensemble discriminant sparse projections applied to music genre classification. In: Proceedings of the ICPR, pp. 823–825, Aug 2010Google Scholar
  196. 196.
    van Kranenburg, P., Baker, W.: Musical style recognition - a quantitative approach. In: Proceedings of the Conference on Interdisciplinary Musicology (2004)Google Scholar
  197. 197.
    van Kranenburg, P.: On measuring musical style - the case of some disputed organ fugues in the J.S. Bach (BWV)catalogue. Computing In Musicology (2007-8)Google Scholar
  198. 198.
    van Kranenburg, P., Garbers, J., Volk, A., Wiering, F., Grijp, L., Veltkamp, R.: Collaboration perspectives for folk song research and music information retrieval: the indispensable role of computational musicology. J. Interdiscipl. Music Stud. 4(1), 17–43 (2010)Google Scholar
  199. 199.
    van Kranenburg, P., Volk, A., Wiering, F.: A comparison between global and local features for computational classification of folk song melodies. J. New Music Res. 42, 1–18 (2012)Google Scholar
  200. 200.
    Krasser, J., Abeßer, J., Großmann, H., Dittmar, C., Cano, E.: Improved music similarity computation based on tone objects. In: Proceedings of the Audio Mostly Conference, pp. 47–54 (2012)Google Scholar
  201. 201.
    Krumhansl, C.L.: Plink: “thin slices” of music. Music Percept.: Interdiscipl. J. 27(5), 337–354 (2010)Google Scholar
  202. 202.
    Kuo, F.F., Shan, M.K.: A personalized music filtering system based on melody style classification. In: Proceedings of the IEEE International Conference on Data Mining, pp. 649–652 (2002)Google Scholar
  203. 203.
    Kuo, F.F., Shan, M.K.: Looking for new, not known music only: music retrieval by melody style. In: Proceedings of the Joint ACM/IEEE Conference on Digital Libraries, pp. 243–251, June 2004Google Scholar
  204. 204.
    Lambrou, T., Kudumakis, P., Speller, R., Sandler, M., Linney, A.: Classification of audio signals using statistical features on time and wavelet transform domains. In: Proceedings of the ICASSP, pp. 3621–3624, May 1998Google Scholar
  205. 205.
    Lampropoulos, A.S., Lampropoulou, P.S., Tsihrintzis, G.A.: Musical genre classification enhanced by improved source separation techniques. In: Proceedings of the ISMIR (2005)Google Scholar
  206. 206.
    Lampropoulos, A.S., Lampropoulou, P.S., Tsihrintzis, G.A.: Music genre classification based on ensemble of signals produced by source separation methods. Intell. Dec. Technol. 4(3), 229–237 (2010)Google Scholar
  207. 207.
    Lampropoulos, A., Lampropoulou, P., Tsihrintzis, G.: A cascade-hybrid music recommender system for mobile services based on musical genre classification and personality diagnosis. Multimed. Tools Appl. 59, 241–258 (2012)Google Scholar
  208. 208.
    Langlois, T., Marques, G.: A music classification method based on timbral features. In: Proceedings of the ISMIR (2009)Google Scholar
  209. 209.
    Langlois, T., Marques, G.: Automatic music genre classification using a hierarchical clustering and a language model approach. In: Proceedings of the International Conference on Advances in Multimedia (2009)Google Scholar
  210. 210.
    Lee, J.-W., Park, S.-B., Kim, S.-K.: Music genre classification using a time-delay neural network. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 178–187. Springer, Heidelberg (2006)Google Scholar
  211. 211.
    Lee, C.H., Shih, J.L., Yu, K.M., Su, J.M.: Automatic music genre classification using modulation spectral contrast feature. In: Proceedings of the ICME (2007)Google Scholar
  212. 212.
    Lee, C.H., Shih, J.L., Yu, K.M., Lin, H.S., Wei, M.H.: Fusion of static and transitional information of cepstral and spectral features for music genre classification. In: IEEE Asia-Pacific Service Computing Conference (2008)Google Scholar
  213. 213.
    Lee, C.H., Lin, H.S., Chou, C.H., Shih, J.L.: Modulation spectral analysis of static and transitional information of cepstral and spectral features for music genre classification. In: Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing (2009)Google Scholar
  214. 214.
    Lee, C., Shih, J., Yu, K., Lin, H.: Automatic music genre classification based on modulation spectral analysis of spectral and cepstral features. IEEE Trans. Multimed. 11(4), 670–682 (2009)Google Scholar
  215. 215.
    Lee, H., Largman, Y., Pham, P., Ng, A.Y.: Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, Dec 2009Google Scholar
  216. 216.
    Lee, C.H., Chou, C.H., Lien, C.C., Fang, J.C.: Music genre classification using modulation spectral features and multiple prototype vectors representation. In: International Congress on Image and Signal Processing (2011)Google Scholar
  217. 217.
    Lehn-Schioler, T., Arenas-García, J., Petersen, K.B., Hansen, L.: A genre classification plug-in for data collection. In: Proceedings of the ISMIR (2006)Google Scholar
  218. 218.
    de León, P., Iñesta, J.: Musical style identification using self-organising maps. In: Proceedings of the WEDELMUSIC, pp. 82–89 (2002)Google Scholar
  219. 219.
    de León, P., Iñesta, J.: Feature-driven recognition of music styles. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 773–781. Springer, Heidelberg (2003)Google Scholar
  220. 220.
    de León, P.J.P., Iñesta, J.M.: Musical style classification from symbolic data: a two-styles case study. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 167–178. Springer, Heidelberg (2004)Google Scholar
  221. 221.
    de León, P.P., Iñesta, J.: Pattern recognition approach for music style identification using shallow statistical descriptors. IEEE Trans. Syst. Man Cybern.: Part C: Appl. Rev. 37(2), 248–257 (2007).Google Scholar
  222. 222.
    de León, F., Martinez, K.: Enhancing timbre model using MFCC and its time derivatives for music similarity estimation. In: Proceedings of the EUSIPCO, Bucharest, Romania, pp. 2005–2009, Aug 2012Google Scholar
  223. 223.
    de León, F., Martinez, K.: Towards efficient music genre classification using FastMap. In: Proceedings of the DAFx (2012)Google Scholar
  224. 224.
    Lerch, A.: An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics. Wiley/IEEE Press, Hoboken (2012)Google Scholar
  225. 225.
    Levy, M., Sandler, M.: Lightweight measures for timbral similarity of musical audio. In: Proceedings of the ACM Workshop on Audio and Music Computing Multimedia, pp. 27–36 (2006)Google Scholar
  226. 226.
    Li, T., Ogihara, M., Li, Q.: A comparative study on content-based music genre classification. In: Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval (2003)Google Scholar
  227. 227.
    Li, T., Tzanetakis, G.: Factors in automatic musical genre classification of audio signals. In: Proceedings of the IEEE Workshop on Applications of the Signal Processing to Audio and Acoustics (2003)Google Scholar
  228. 228.
    Li, T., Ogihara, M.: Music artist style identification by semi-supervised learning from both lyrics and contents. In: Proceedings of the ACM Multimedia (2004)Google Scholar
  229. 229.
    Li, M., Sleep, R.: Melody classification using a similarity metric based on Kolmogorov complexity. In: Proceedings of the SMC (2004)Google Scholar
  230. 230.
    Li, M., Sleep, R.: Genre classification via an LZ78-based string kernel. In: Proceedings of the ISMIR (2005)Google Scholar
  231. 231.
    Li, T., Ogihara, M.: Music genre classification with taxonomy. In: Proceedings of the ICASSP, Philadelphia, PA, pp. 197–200, Mar 2005Google Scholar
  232. 232.
    Li, T., Ogihara, M.: Toward intelligent music information retrieval. IEEE Trans. Multimed. 8(3), 564–574 (2006)Google Scholar
  233. 233.
    Li, T., Ogihara, M., Shao, B., Wang, D.: Machine learning approaches for music information retrieval. In: Theory and Novel Applications of Machine Learning. I-Tech, Austria (2009)Google Scholar
  234. 234.
    Li, T.L., Chan, A.B., Chun, A.H.: Automatic musical pattern feature extraction using convolutional neural network. In: Proceedings of the International Conference on Data Mining and Applications (2010)Google Scholar
  235. 235.
    Li, T., Chan, A.: Genre classification and the invariance of MFCC features to key and tempo. In: Proceedings of the International Conference on Multimedia Modeling, Taipei, China, Jan 2011Google Scholar
  236. 236.
    Lidy, T., Rauber, A.: Genre-oriented organization of music collections using the SOMeJB system: an analysis of rhythm patterns and other features. In: Proceedings of the DELOS Workshop Multimedia Contents in Digital Libraries (2003)Google Scholar
  237. 237.
    Lidy, T.: Marsyas and rhythm patterns: evaluation of two music genre classification systems. In: Proceedings of the Workshop Data Analysis, June 2003Google Scholar
  238. 238.
    Lidy, T., Rauber, A.: Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In: Proceedings of the ISMIR (2005)Google Scholar
  239. 239.
    Lidy, T.: Evaluation of new audio features and their utilization in novel music retrieval applications. Master’s thesis, Vienna University of Technology, Dec 2006Google Scholar
  240. 240.
    Lidy, T., Rauber, A., Pertusa, A., Iñesta, J.M.: Improving genre classification by combination of audio and symbolic descriptors using a transcription system. In: Proceedings of the ISMIR, Vienna, Austria, pp. 61–66, Sept 2007Google Scholar
  241. 241.
    Lidy, T., Rauber, A.: Classification and clustering of music for novel music access applications. In: Cord, M., Cunningham, P. (eds.) Machine Learning Techniques for Multimedia, pp. 249–285. Springer, Heidelberg (2008)Google Scholar
  242. 242.
    Lidy, T., Silla, C., Cornelis, O., Gouyon, F., Rauber, A., Kaestner, C.A., Koerich, A.L.: On the suitability of state-of-the-art music information retrieval methods for analyzing, categorizing and accessing non-western and ethnic music collections. Signal Process. 90(4), 1032–1048 (2010)MATHGoogle Scholar
  243. 243.
    Lidy, T., Mayer, R., Rauber, A., de León, P.P., Pertusa, A., Quereda, J.: A cartesian ensemble of feature subspace classifiers for music categorization. In: Proceedings of the ISMIR, pp. 279–284 (2010)Google Scholar
  244. 244.
    Lim, S.C., Jang, S.J., Lee, S.P., Kim, M.Y.: Music genre/mood classification using a feature-based modulation spectrum. In: Proceedings of the International Conference on Modelling, Identification and Control (2011)Google Scholar
  245. 245.
    Lin, C.-R., Liu, N.-H., Wu, Y.-H., Chen, A.L.P.: Music classification using significant repeating patterns. In: Lee, Y.J., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 506–518. Springer, Heidelberg (2004)Google Scholar
  246. 246.
    Lippens, S., Martens, J., De Mulder, T.: A comparison of human and automatic musical genre classification. In: Proceedings of the ICASSP, pp. 233–236, May 2004Google Scholar
  247. 247.
    Liu, Y., Xu, J., Wei, L., Tian, Y.: The study of the classification of Chinese folk songs by regional style. In: Proceedings of the International Conference on Semantic Computing, pp. 657–662, Sept 2007Google Scholar
  248. 248.
    Liu, X., Yang, D., Chen, X.: New approach to classification of Chinese folk music based on extension of hmm. In: Proceedings of the ICALIP, pp. 1172–1179, July 2008Google Scholar
  249. 249.
    Liu, Y., Wei, L., Wang, P.: Regional style automatic identification for Chinese folk songs. In: World Congress on Computer Science and Information Engineering (2009)Google Scholar
  250. 250.
    Liu, Y., Xiang, Q., Wang, Y., Cai, L.: Cultural style based music classification of audio signals. In: Proceedings of the ICASSP, Taipei, Taiwan, Apr 2009Google Scholar
  251. 251.
    Lo, Y.L., Lin, Y.C.: Content-based music classification. In: Proceedings of the International Conference on Computer Science Information Technology, pp. 112–116 (2010)Google Scholar
  252. 252.
    Loh, Q.J.B., Emmanuel, S.: ELM for the classification of music genres. In: Proceedings of the International Conference on Control, Automation, Robotics and Vision, pp. 1–6 (2006)Google Scholar
  253. 253.
    Londei, A., Loreto, V., Belardinelli, M.O.: Musical style and authorship categorization by informative compressors. In: Proceedings of the ESCOM Conference on Hanover, Germany, pp. 200–203, Sept 2003Google Scholar
  254. 254.
    Lopes, M., Gouyon, F., Koerich, A., Oliveira, L.E.S.: Selection of training instances for music genre classification. In: Proceedings of the ICPR, Istanbul, Turkey (2010)Google Scholar
  255. 255.
    Lukashevich, H., Abeßer, J., Dittmar, C., Großmann, H.: From multi-labeling to multi-domain-labeling: a novel two-dimensional approach to music genre classification. In: Proceedings of the ISMIR (2009)Google Scholar
  256. 256.
    Lukashevich, H.: Applying multiple kernel learning to automatic genre classification. In: Gaul, W.A., Geyer-Schulz, A., Schmidt-Thieme, L., Kunze, J. (eds.) Challenges at the Interface of Data Analysis, Computer Science, and Optimization, pp. 393–400. Springer, Berlin (2012)Google Scholar
  257. 257.
    Christanti, M.V., Kurniawan, F., Tony: Automatic music classification for Dangdut and Campursari using Naïve Bayes. In: International Conference on Electrical Engineering and Informatics (2011)Google Scholar
  258. 258.
    Mace, S.T., Wagoner, C.L., Teachout, D.J., Hodges, D.A.: Genre identification of very brief musical excerpts. Psychol. Music 40(1), 112–128 (2011)Google Scholar
  259. 259.
    Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., Davis, R.B.: Zipf’s law, music classification, and aesthetics. Comput. Music J. 29(1), 55–69 (2005)Google Scholar
  260. 260.
    Manaris, B., Krehbiel, D., Roos, P., Zalonis, T.: Armonique: experiments in content-based similarity retrieval using power-law melodic and timbre metrics. In: Proceedings of the ISMIR, pp. 343–348 (2008)Google Scholar
  261. 261.
    Manaris, B., Roos, P., Krehbiel, D., Zalonis, T., Armstrong, J.: Zipf’s law, power laws and music aesthetics. In: Li, T., Ogihara, M., Tzanetakis, G. (eds.) Music Data Mining, pp. 169–216. CRC Press, Boca Raton (2011)Google Scholar
  262. 262.
    Mandel, M.I., Poliner, G.E., Ellis, D.P.W.: Support vector machine active learning for music retrieval. Multimed. Syst. 12, 3–13 (2006)Google Scholar
  263. 263.
    Manzagol, P.A., Bertin-Mahieux, T., Eck, D.: On the use of sparse time-relative auditory codes for music. In: Proceedings of the ISMIR, Philadelphia, PA, pp. 603–608, Sept 2008Google Scholar
  264. 264.
    Markov, K., Matsui, T.: Music genre classification using self-taught learning via sparse coding. In: Proceedings of the ICASSP, pp. 1929–1932, Mar 2012Google Scholar
  265. 265.
    Markov, K., Matsui, T.: Nonnegative matrix factorization based self-taught learning with application to music genre classification. In: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–5, Sept 2012Google Scholar
  266. 266.
    Marques, G., Langlois, T.: A language modeling approach for the classification of music pieces. In: Proceedings of the Data Mining, pp. 193–198 (2009)Google Scholar
  267. 267.
    Marques, G., Lopes, M., Sordo, M., Langlois, T., Gouyon, F.: Additional evidence that common low-level features of individual audio frames are not representative of music genres. In: Proceedings of the SMC, Barcelona, Spain, July 2010Google Scholar
  268. 268.
    Marques, G., Langlois, T., Gouyon, F., Lopes, M., Sordo, M.: Short-term feature space and music genre classification. J. New Music Res. 40(2), 127–137 (2011)Google Scholar
  269. 269.
    Marques, C., Guiherme, I.R., Nakamura, R.Y.M., Papa, J.P.: New trends in musical genre classification using optimum-path forest. In: Proceedings of the ISMIR (2011)Google Scholar
  270. 270.
    Martin, K.D., Scheirer, E.D., Vercoe, B.L.: Music content analysis through models of audition. In: Proceedings of the ACM Multimedia Workshop on Content Processing of Music for Multimedia Applications, Sept 1998Google Scholar
  271. 271.
    Matityaho, B., Furst, M.: Neural network based model for classification of music type. In: Proceedings of the Convention of Electrical and Electronics Engineers in Israel, pp. 1–5, Mar 1995Google Scholar
  272. 272.
    Mayer, R., Neumayer, R., Rauber, A.: Rhyme and style features for musical genre classification by song lyrics. In: Proceedings of the ISMIR (2008)Google Scholar
  273. 273.
    Mayer, R., Neumayer, R., Rauber, A.: Combination of audio and lyrics features for genre classification in digital audio collections. In: Proceedings of the ACM Multimedia, pp. 159–168, Oct 2008Google Scholar
  274. 274.
    Mayer, R., Rauber, A.: Building ensembles of audio and lyrics features to improve musical genre classification. In: International Conference on Distributed Frameworks for Multimedia Applications (2010)Google Scholar
  275. 275.
    Mayer, R., Rauber, A.: Multimodal aspects of music retrieval: audio, song lyrics - and beyond? Stud. Comput. Intell. 274, 333–363 (2010)Google Scholar
  276. 276.
    Mayer, R., Rauber, A., Ponce de León, P.J., Pérez-Sancho, C., Iñesta, J.M.: Feature selection in a cartesian ensemble of feature subspace classifiers for music categorisation. In: Proceedings of the ACM International Workshop on Machine Learning and Music, pp. 53–56 (2010)Google Scholar
  277. 277.
    Mayer, R., Rauber, A.: Music genre classification by ensembles of audio and lyrics features. In: Proceedings of the ISMIR, pp. 675–680 (2011)Google Scholar
  278. 278.
    McDermott, J., Hauser, M.D.: Nonhuman primates prefer slow tempos but dislike music overall. Cognition 104(3), 654–668 (2007)Google Scholar
  279. 279.
    McKay, C., Fujinaga, I.: Automatic genre classification using large high-level musical feature sets. In: Proceedings of the ISMIR (2004)Google Scholar
  280. 280.
    McKay, C.: Automatic genre classification of MIDI recordings. Ph.D. thesis, McGill University, Montréal, Canada, June 2004Google Scholar
  281. 281.
    McKay, C., Fujinaga, I.: Automatic music classification and the importance of instrument identification. In: Proceedings of the Conference on Interdisciplinary Musicology (2005)Google Scholar
  282. 282.
    McKay, C., Fujinaga, I.: Music genre classification: is it worth pursuing and how can it be improved? In: Proceedings of the ISMIR, Victoria, Canada, Oct 2006Google Scholar
  283. 283.
    McKay, C., Fujinaga, I.: Combining features extracted from audio, symbolic and cultural sources. In: Proceedings of the ISMIR, pp. 597–602 (2008)Google Scholar
  284. 284.
    McKay, C.: Automatic music classification with jMIR. Ph.D. thesis, McGill University, Montréal, Canada, Jan 2010Google Scholar
  285. 285.
    McKay, C., Fujinaga, I.: Improving automatic music classification performance by extracting features from different types of data. In: Multimedia Information Retrieval, pp. 257–266 (2010)Google Scholar
  286. 286.
    McKay, C., Burgoyne, J.A., Hockman, J., Smith, J.B.L., Vigliensoni, G., Fujinaga, I.: Evaluating the genre classification performance of lyrical features relative to audio, symbolic and cultural features. In: Proceedings of the ISMIR, pp. 213–218 (2010)Google Scholar
  287. 287.
    McKinney, M.F., Breebaart, J.: Features for audio and music classification. In: Proceedings of the ISMIR, Baltimore, MD, Oct 2003Google Scholar
  288. 288.
    Mendes, R.S., Ribeiro, H.V., Freire, F.C.M., Tateishi, A.A., Lenzi, E.K.: Universal patterns in sound amplitudes of songs and music genres. Phys. Rev. E 83, 017101 (2011)Google Scholar
  289. 289.
    Meng, A., Ahrendt, P., Larsen, J.: Improving music genre classification by short-time feature integration. In: Proceedings of the ICASSP, Philadelphia, PA, pp. 497–500, Mar 2005Google Scholar
  290. 290.
    Meng, A.: Temporal feature integration for music organization. Ph.D. thesis, Technical University of Denmark (2006)Google Scholar
  291. 291.
    Meng, A., Shawe-Taylor, J.: An investigation of feature models for music genre classification using the support vector classifier. In: Proceedings of the ISMIR (2008)Google Scholar
  292. 292.
    Mierswa, I., Morik, K.: Automatic feature extraction for classifying audio data. Mach. Learn. 58(2–3), 127–149 (2005)MATHGoogle Scholar
  293. 293.
  294. 294.
  295. 295.
  296. 296.
  297. 297.
  298. 298.
  299. 299.
  300. 300.
    Mitra, V., Wang, C.J.: Content based audio classification: a neural network approach. Soft Comput. - A Fusion Found. Methodol. Appl. 12, 639–646 (2008)Google Scholar
  301. 301.
    Mitri, G., Uitdenbogerd, A.L., Ciesielski, V.: Automatic music classification problems. In: Proceedings of the Autralasian Computer Science Conference (2004)Google Scholar
  302. 302.
    Moerchen, F., Ultsch, A., Nöcker, M., Stamm, C.: Databionic visualization of music collections according to perceptual distance. In: Proceedings of the ISMIR, London, UK, pp. 396–403, Sept 2005Google Scholar
  303. 303.
    Moerchen, F., Mierswa, I., Ultsch, A.: Understandable models of music collections based on exhaustive feature generation with temporal statistics. In: International Conference on Knowledge Discover and Data Mining (2006)Google Scholar
  304. 304.
    Mostafa, M.M., Billor, N.: Recognition of western style musical genres using machine learning techniques. Expert Syst. Appl. 36(8), 11378–11389 (2009)Google Scholar
  305. 305.
    Nagathil, A., Gerkmann, T., Martin, R.: Musical genre classification based on highly-resolved cepstral modulation spectrum. In: Proceedings of the EUSIPCO, Aalborg, Denmark, pp. 462–466, Aug 2010Google Scholar
  306. 306.
    Nagathil, A., Göttel, P., Martin, R.: Hierarchical audio classification using cepstral modulation ratio regressions based on Legendre polynomials. In: Proceedings of the ICASSP, pp. 2216–2219, July 2011Google Scholar
  307. 307.
    Nayak, S., Bhutani, A.: Music genre classification using GA-induced minimal feature-set. In: Proceedings of the National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (2011)Google Scholar
  308. 308.
    Neubarth, K., Goienetxea, I., Johnson, C., Conklin, D.: Association mining of folk music genres and toponyms. In: Proceedings of the ISMIR (2012)Google Scholar
  309. 309.
    Neumayer, R., Rauber, A.: Integration of text and audio features for genre classification in music information retrieval. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 724–727. Springer, Heidelberg (2007)Google Scholar
  310. 310.
    Ni, Y., McVicar, M., Santos, R., Bie, T.D.: Using hyper-genre training to explore genre information for automatic chord estimation. In: Proceedings of the ISMIR (2012)Google Scholar
  311. 311.
    Nie, F., Xiang, S., Song, Y., Zhang, C.: Extracting the optimal dimensionality for local tensor discriminant analysis. Pattern Recogn. 42(1), 105–114 (2009)MATHGoogle Scholar
  312. 312.
    Nopthaisong, C., Hasan, M.M.: Automatic music classification and retrieval: experiments with Thai music collection. In: Proceedings of the International Conference on Information and Communication Technology, pp. 76–81, Mar 2007Google Scholar
  313. 313.
    Norowi, N.M., Doraisamy, S., Wirza, R.: Factors affecting automatic genre classification: an investigation incorporating non-western musical forms. In: Proceedings of the ISMIR (2005)Google Scholar
  314. 314.
    Novello, A., McKinney, M.F., Kohlrausch, A.: Perceptual evaluation of music similarity. In: Proceedings of the ISMIR, pp. 246–249 (2006)Google Scholar
  315. 315.
    Orio, N.: Music retrieval: a tutorial and review. Found. Trends Inf. Retr. 1(1), 1–90 (2006)MATHGoogle Scholar
  316. 316.
    Orio, N., Rizo, D., Miotto, R., Schedl, M., Montecchio, N., Lartillot, O.: MusiClef: a benchmark activity in multimodal music information retrieval. In: Proceedings of the ISMIR, pp. 603–608 (2011)Google Scholar
  317. 317.
    Otsuka, Y., Yanagi, J., Watanabe, S.: Discriminative and reinforcing stimulus properties of music for rats. Behav. Process. 80(2), 121–127 (2009)Google Scholar
  318. 318.
    Pampalk, E., Dixon, S., Widmer, G.: On the evaluation of perceptual similarity measures for music. In: Proceedings of the DAFx, London, UK, pp. 7–12, Sept 2003Google Scholar
  319. 319.
    Pampalk, E., Flexer, A., Widmer, G.: Improvements of audio-based music similarity and genre classification. In: Proceedings of the ISMIR, London, UK, pp. 628–233, Sept 2005Google Scholar
  320. 320.
    Pampalk, E.: Computational models of music similarity and their application in music information retrieval. Ph.D. thesis, Vienna University of Technology, Vienna, Austria, Mar 2006Google Scholar
  321. 321.
    Panagakis, Y., Benetos, E., Kotropoulos, C.: Music genre classification: a multilinear approach. In: Proceedings of the ISMIR, Philadelphia, PA, pp. 583–588, Sept 2008Google Scholar
  322. 322.
    Panagakis, Y., Kotropoulos, C., Arce, G.R.: Music genre classification via sparse representations of auditory temporal modulations. In: Proceedings of the EUSIPCO, Glasgow, Scotland, Aug 2009Google Scholar
  323. 323.
    Panagakis, Y., Kotropoulos, C., Arce, G.R.: Music genre classification using locality preserving non-negative tensor factorization and sparse representations. In: Proceedings of the ISMIR, Kobe, Japan, pp. 249–254, Oct 2009Google Scholar
  324. 324.
    Panagakis, Y., Kotropoulos, C., Arce, G.R.: Non-negative multilinear principal component analysis of auditory temporal modulations for music genre classification. IEEE Trans. Acoust. Speech Lang. Process. 18(3), 576–588 (2010)Google Scholar
  325. 325.
    Panagakis, Y., Kotropoulos, C., Arce, G.R.: Sparse multi-label linear embedding nonnegative tensor factorization for automatic music tagging. In: Proceedings of the EUSIPCO, pp. 492–496, Aug 2010Google Scholar
  326. 326.
    Panagakis, Y., Kotropoulos, C.: Music genre classification via topology preserving non-negative tensor factorization and sparse representations. In: Proceedings of the ICASSP, pp. 249–252, Mar 2010Google Scholar
  327. 327.
    Paradzinets, A., Harb, H., Chen, L.: Multiexpert system for automatic music genre classification. Technical report, Ecole Centrale de Lyon, Lyon, France, June 2009Google Scholar
  328. 328.
    Park, D.C.: Classification of audio signals using fuzzy c-means with divergence-based kernel. Pattern Recon. Lett. 30(9), 794–798 (2009)Google Scholar
  329. 329.
    Park, D.C.: Partitioned feature-based classifier model. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, pp. 412–417 (2009)Google Scholar
  330. 330.
    Park, D.C.: Partitioned feature-based classifier model with expertise table. In: Proceedings of the IEEE International Conference on Bio-inspired Computing (2010)Google Scholar
  331. 331.
    Park, S., Park, J., Sim, K.: Optimization system of musical expression for the music genre classification. In: Proceedings of the International Conference on Control, Automation, and Systems, pp. 1644–1648, Oct 2011Google Scholar
  332. 332.
    Peeters, G.: A generic system for audio indexing: application to speech/music segmentation and music genre recognition. In: Proceedings of the DAFx, Bordeaux, France, Sept 2007Google Scholar
  333. 333.
    Peeters, G.: Spectral and temporal periodicity representations of rhythm for the automatic classification of music audio signal. IEEE Trans. Audio Speech Lang. Process. 19(5), 1242–1252 (2011)Google Scholar
  334. 334.
    Peng, W., Li, T., Ogihara, M.: Music clustering with constraints. In: Proceedings of the ISMIR, pp. 27–32 (2007)Google Scholar
  335. 335.
    Pérez-Sancho, C., Iñesta, J.M., Calera-Rubio, J.: A text categorization approach for music style recognition. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 649–657. Springer, Heidelberg (2005)Google Scholar
  336. 336.
    Iñesta, T.P.J.M., Rizo, D.: metamidi: a tool for automatic metadata extraction from MIDI files. In: Proceedings of the Workshop on Exploring Musical Information Spaces, pp. 36–40, Oct 2009Google Scholar
  337. 337.
    Pérez-García, T., Pérez-Sancho, C., Iñesta, J.: Harmonic and instrumental information fusion for musical genre classification. In: Proceedings of the ACM International Workshop on Machine Learning and Music, pp. 49–52 (2010)Google Scholar
  338. 338.
    Pérez-Sancho, C., Iñesta, J.M., Calera-Rubio, J.: Style recognition through statistical event models. J. New Music Res. 34(4), 331–340 (2005)Google Scholar
  339. 339.
    Pérez-Sancho, C., Rizo, D., Iñesta, J.: Stochastic text models for music categorization. In: da Vitoria Lobo, N., et al. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 55–64. Springer, Heidelberg (2008)Google Scholar
  340. 340.
    Pérez-Sancho, C., Rizo, D., Iñesta, J.M.: Genre classification using chords and stochastic language models. Connect. Sci. 21, 145–159 (2009)Google Scholar
  341. 341.
    Pérez-Sancho, C.: Stochastic language models for music information retrieval. Ph.D. thesis, Universidad de Alicante, Spain, June 2009Google Scholar
  342. 342.
    Pohle, T.: Extraction of audio descriptors and their evaluation in music classification tasks. Ph.D. thesis, Technischen Universität Kaiserslautern, Jan 2005Google Scholar
  343. 343.
    Pohle, T., Knees, P., Schedl, M., Widmer, G.: Independent component analysis for music similarity computation. In: Proceedings of ISMIR, pp. 228–233 (2006)Google Scholar
  344. 344.
    Pohle, T., Pampalk, E., Widmer, G.: Evaluation of frequently used audio features for classification of music into perceptual categories. In: International Workshop on Content-Based Multimedia Indexing (2008)Google Scholar
  345. 345.
    Pohle, T., Schnitzer, D., Schedl, M., Knees, P., Widmer, G.: On rhythm and general music similarity. In: Proceedings of the ISMIR (2009)Google Scholar
  346. 346.
    Pollastri, E., Simoncelli, G.: Classification of melodies by composer with hidden Markov models. In: Proceedings of the WEDELMUSIC, pp. 88–95, Nov 2001Google Scholar
  347. 347.
    Porter, D., Neuringer, A.: Music discriminations by pigeons. Exp. Psychol.: Animal Behav. Process. 10(2), 138–148 (1984)Google Scholar
  348. 348.
    Pye, D.: Content-based methods for the management of digital music. In: Proceedings of the ICASSP (2000)Google Scholar
  349. 349.
    Rafailidis, D., Nanopoulos, A., Manolopoulos, Y.: Nonlinear dimensionality reduction for efficient and effective audio similarity searching. Multimed. Tools Appl. 42, 273–293 (2009)Google Scholar
  350. 350.
    Rauber, A., Frühwirth, M.: Automatically analyzing and organizing music archives. In: Constantopoulos, P., Sølvberg, I.T. (eds.) ECDL 2001. LNCS, vol. 2163, p. 402. Springer, Heidelberg (2001)Google Scholar
  351. 351.
    Rauber, A., Pampalk, E., Merkl, D.: Using psycho-acoustic models and self-organizing maps to create a hierarchical structuring of music by musical styles. In: Proceedings of the ISMIR, pp. 71–80, Oct 2002Google Scholar
  352. 352.
    Ravelli, E., Richard, G., Daudet, L.: Audio signal representations for indexing in the transform domain. IEEE Trans. Audio Speech Lang. Process. 18(3), 434–446 (2010)Google Scholar
  353. 353.
    Reed, J., Lee, C.H.: A study on music genre classification based on universal acoustic models. In: Proceedings of the ISMIR (2006)Google Scholar
  354. 354.
    Reed, J., Lee, C.H.: A study on attribute-based taxonomy for music information retrieval. In: Proceedings of the ISMIR, pp. 485–490 (2007)Google Scholar
  355. 355.
    Rin, J.M., Chen, Z.S., Jang, J.S.R.: On the use of sequential patterns mining as temporal features for music genre classification. In: Proceedings of the ICASSP (2010)Google Scholar
  356. 356.
    Ren, J.M., Jang, J.S.R.: Time-constrained sequential pattern discovery for music genre classification. In: Proceedings of the ICASSP, pp. 173–176 (2011)Google Scholar
  357. 357.
    Ren, J.M., Jang, J.S.R.: Discovering time-constrained sequential patterns for music genre classification. IEEE Trans. Audio Speech Lang. Process. 20(4), 1134–1144 (2012)Google Scholar
  358. 358.
    Ribeiro, H., Zunino, L., Mendes, R., Lenzi, E.: Complexity-entropy causality plane: a useful approach for distinguishing songs. Phys. A: Stat. Mech. Its Appl. 391(7), 2421–2428 (2012)Google Scholar
  359. 359.
    Rizzi, A., Buccino, N.M., Panella, M., Uncini, A.: Genre classification of compressed audio data. In: Proceedings of the International Workshop on Multimedia Signal Processing (2008)Google Scholar
  360. 360.
    Ro, W., Kwon, Y.: 1/f noise analysis of songs in various genre of music. Chaos Soliton. Fract. 42(4), 2305–2311 (2009)Google Scholar
  361. 361.
    Rocha, B.: Genre classification based on predominant melodic pitch contours. Master’s thesis, Universitat Pompeu Fabra, Barcelona, Spain, Sept 2011Google Scholar
  362. 362.
    Rump, H., Miyabe, S., Tsunoo, E., Ono, N., Sagayama, S.: Autoregressive MFCC models for genre classification improved by harmonic-percussion separation. In: Proceedings of the ISMIR, pp. 87–92 (2010)Google Scholar
  363. 363.
    Ruppin, A., Yeshurun, H.: Midi music genre classification by invariant features. In: Proceedings of the ISMIR, pp. 397–399 (2006)Google Scholar
  364. 364.
    Salamon, J., Rocha, B., Gomez, E.: Musical genre classification using melody features extracted from polyphonic music signals. In: Proceedings of the ICASSP, Kyoto, Japan, Mar 2012Google Scholar
  365. 365.
    Sanden, C., Befus, C., Zhang, J.Z.: Clustering-based genre prediction on music data. In: Proceedings of the International C* Conference on Computer Science and Software Engineering, pp. 117–119 (2008)Google Scholar
  366. 366.
    Sanden, C., Befus, C.R., Zhang, J.: Perception based multi-label genre classification on music data. In: Proceedings of the ICMC, pp. 9–15 (2010)Google Scholar
  367. 367.
    Sanden, C.: An empirical evaluation of computational and perceptual multi-label genre classification on music. Master’s thesis, University of Lethbridge (2010)Google Scholar
  368. 368.
    Sanden, C., Zhang, J.Z.: Enhancing multi-label music genre classification through ensemble techniques. In: Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 705–714 (2011)Google Scholar
  369. 369.
    Sanden, C., Zhang, J.Z.: Algorithmic multi-genre classification of music: an empirical study. In: Proceedings of the ICMC (2011)Google Scholar
  370. 370.
    Sanden, C., Befus, C.R., Zhang, J.Z.: A perceptual study on music segmentation and genre classification. J. New Music Res. 41(3), 277–293 (2012)Google Scholar
  371. 371.
    de los Santos, C.A.: Nonlinear audio recurrence analysis with application to music genre classification. Master’s thesis, Universitat Pompeu Fabra, Barcelona, Spain (2010)Google Scholar
  372. 372.
    Scaringella, N., Zoia, G.: On the modeling of time information for automatic genre recognition systems in audio signals. In: Proceedings of the ISMIR, pp. 666–671 (2005)Google Scholar
  373. 373.
    Scaringella, N., Zoia, G., Mlynek, D.: Automatic genre classification of music content: a survey. IEEE Signal Process. Mag. 23(2), 133–141 (2006)Google Scholar
  374. 374.
    Schedl, M., Pohle, T., Knees, P., Widmer, G.: Assigning and visualizing music genres by web-based co-occurrence analysis. In: Proceedings of the ISMIR (2006)Google Scholar
  375. 375.
    Schierz, A., Budka, M.: High-performance music information retrieval system for song genre classification. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 725–733. Springer, Heidelberg (2011)Google Scholar
  376. 376.
    Schindler, A., Mayer, R., Rauber, A.: Facilitating comprehensive benchmarking experiments on the million song dataset. In: Proceedings of the ISMIR, Oct 2012Google Scholar
  377. 377.
    Schindler, A., Rauber, A.: Capturing the temporal domain in echonest features for improved classification effectiveness. In: Proceedings of the Adaptive Multimedia Retrieval, Oct 2012Google Scholar
  378. 378.
    Schlüter, J., Osendorfer, C.: Music similarity estimation with the mean-covariance restricted Boltzmann machine. In: Proceedings of the ICMLA (2011)Google Scholar
  379. 379.
    Seo, J., Lee, S.: Higher-order moments for musical genre classification. Signal Process. 91(8), 2154–2157 (2011)MATHGoogle Scholar
  380. 380.
    Serra, J., de los Santos, C.A., Andrzejak, R.G.: Nonlinear audio recurrence analysis with application to genre classification. In: Proceedings of the ICASSP (2011)Google Scholar
  381. 381.
    Seyerlehner, K.: Content-based music recommender systems: beyond simple frame-level audio similarity. Ph.D. thesis, Johannes Kepler University, Linz, Austria, Dec 2010Google Scholar
  382. 382.
    Seyerlehner, K., Widmer, G., Pohle, T.: Fusing block-level features for music similarity estimation. In: Proceedings of the DAFx (2010)Google Scholar
  383. 383.
    Seyerlehner, K., Widmer, G., Knees, P.: A comparison of human, automatic and collaborative music genre classification and user centric evaluation of genre classification systems. In: Detyniecki, M., Knees, P., Nürnberger, A., Schedl, M., Stober, S. (eds.) AMR 2010. LNCS, vol. 6817, pp. 118–131. Springer, Heidelberg (2012)Google Scholar
  384. 384.
    Seyerlehner, K., Schedl, M., Sonnleitner, R., Hauger, D., Ionescu, B.: From improved auto-taggers to improved music similarity measures. In: Proceedings of the Adaptive Multimedia Retrieval, Copenhagen, Denmark, Oct 2012Google Scholar
  385. 385.
    Shan, M.K., Kuo, F.F., Chen, M.F.: Music style mining and classification by melody. In: Proceedings of the ICME, vol. 1, pp. 97–100 (2002)Google Scholar
  386. 386.
    Shao, X., Xu, C., Kankanhalli, M.S.: Unsupervised classification of music genre using hidden Markov model. In: Proceedings of the ICME, pp. 2023–2026 (2004)Google Scholar
  387. 387.
    Shen, J., Shepherd, J.A., Ngu, A.H.H.: On efficient music genre classification. In: Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 253–264. Springer, Heidelberg (2005)Google Scholar
  388. 388.
    Shen, J., Shepherd, J., Ngu, A.H.H.: Towards effective content-based music retrieval with multiple acoustic feature combination. IEEE Trans. Multimed. 8(6), 1179–1189 (2006)Google Scholar
  389. 389.
    Shen, Y., Li, X., Ma, N.W., Krishnan, S.: Parametric time-frequency analysis and its applications in music classification. EURASIP J. Adv. Signal Process. 2010, 1–9 (2010)Google Scholar
  390. 390.
    Shih, J.L., Lee, C.H., Lin, S.W.: Automatic classification of musical audio signals. J. Inf. Technol. Appl. 1(2), 95–105 (2006)Google Scholar
  391. 391.
    Silla Jr., C.N., Kaestner, C.A.A., Koerich, A.L.: Time-space ensemble strategies for automatic music genre classification. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.) IBERAMIA 2006 and SBIA 2006. LNCS (LNAI), vol. 4140, pp. 339–348. Springer, Heidelberg (2006)Google Scholar
  392. 392.
    Silla, C.N., Koerich, A., Kaestner, C.: Automatic music genre classification using ensembles of classifiers. In: Proceedings of the IEEE International Conference on Systems, Man, Cybernetics, pp. 1687–1692 (2007)Google Scholar
  393. 393.
    Silla, C.N., Koerich, A.L., Kaestner, C.A.A.: Feature selection in automatic music genre classification. In: Proceedings of the IEEE International Symposium on Multimedia, pp. 39–44 (2008)Google Scholar
  394. 394.
    Silla, C.N., Koerich, A.L., Kaestner, C.A.A.: The Latin music database. In: Proceedings of the ISMIR (2008)Google Scholar
  395. 395.
    Silla, C., Freitas, A.: Novel top-down approaches for hierarchical classification and their application to automatic music genre classification. In: IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, USA, Oct 2009Google Scholar
  396. 396.
    Silla, C.N., Koerich, A.L., Kaestner, C.A.A.: A feature selection approach for automatic music genre classification. Int. J. Semantic Comput. 3(2), 183–208 (2009)Google Scholar
  397. 397.
    Silla, C., Koerich, A., Kaestner, C.: Improving automatic music genre classification with hybrid content-based feature vectors. In: Proceedings of the Symposium on Applied Computer, Sierre, Switzerland, Mar 2010Google Scholar
  398. 398.
    Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Mining Knowl. Disc. 22, 31–72 (2011)MathSciNetMATHGoogle Scholar
  399. 399.
    Simsekli, U.: Automatic music genre classification using bass lines. In: Proceedings of the ICPR (2010)Google Scholar
  400. 400.
    Smith, J.B.L., Burgoyne, J.A., Fujinaga, I., Roure, D.D., Downie, J.S.: Design and creation of a large-scale database of structural annotations. In: Proceedings of the ISMIR (2011)Google Scholar
  401. 401.
    Soltau, H., Schultz, T., Westphal, M., Waibel, A.: Recognition of music types. In: Proceedings of the ICASSP (1998)Google Scholar
  402. 402.
    Song, Y., Zhang, C., Xiang, S.: Semi-supervised music genre classification. In: Proceedings of the ICASSP, pp. 729–732 (2007)Google Scholar
  403. 403.
    Song, Y., Zhang, C.: Content-based information fusion for semi-supervised music genre classification. IEEE Trans. Multimed. 10(1), 145–152 (2008)Google Scholar
  404. 404.
    Sordo, M., Celma, O., Blech, M., Guaus, E.: The quest for musical genres: do the experts and the wisdom of crowds agree? In: Proceedings of the ISMIR (2008)Google Scholar
  405. 405.
    Sotiropoulos, D., Lampropoulos, A., Tsihrintzis, G.: Artificial immune system-based music genre classification. In: Tsihrintzis, G., Virvou, M., Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia. SCI, vol. 142, pp. 191–200. Springer, Heidelberg (2008)Google Scholar
  406. 406.
    Srinivasan, H., Kankanhalli, M.: Harmonicity and dynamics-based features for audio. In: Proceedings of the ICASSP, vol. 4, pp. 321–324 (2004)Google Scholar
  407. 407.
    Sturm, B.L., Noorzad, P.: On automatic music genre recognition by sparse representation classification using auditory temporal modulations. In: Proceedings of the CMMR, London, UK, June 2012Google Scholar
  408. 408.
    Sturm, B.L.: An analysis of the GTZAN music genre dataset. In: Proceedings of the ACM MIRUM Workshop, Nara, Japan, Nov 2012Google Scholar
  409. 409.
    Sturm, B.L.: Two systems for automatic music genre recognition: what are they really recognizing? In: Proceedings of the ACM MIRUM Workshop, Nara, Japan, Nov 2012Google Scholar
  410. 410.
    Sturm, B.L.: Classification accuracy is not enough: on the analysis of music genre recognition systems. J. Intell. Inf. Syst. 41, 371–406 (2013)MathSciNetGoogle Scholar
  411. 411.
    Sturm, B.L.: On music genre classification via compressive sampling. In: Proceedings of the ICME, July 2013, pp. 1–6 (2013)Google Scholar
  412. 412.
    Sturm, B.L.: Music genre recognition with risk and rejection. In: Proceedings of the ICME, July 2013, pp. 1–6 (2013)Google Scholar
  413. 413.
    Su, Z.Y., Wu, T.: Multifractal analyses of music sequences. Phys. D: Nonlin. Phen. 221(2), 188–194 (2006)MathSciNetMATHGoogle Scholar
  414. 414.
    Sundaram, S., Narayanan, S.: Experiments in automatic genre classification of full-length music tracks using audio activity rate. In: Proceedings of the IEEE Workshop Multimedia Signal Processing (2007)Google Scholar
  415. 415.
    Tacchini, E., Damiani, E.: What is a “musical world”? An affinity propagation approach. In: Proceedings of the ACM MIRUM Workshop, Scottsdale, AZ, USA, pp. 57–62, Nov 2011Google Scholar
  416. 416.
    Happi Tietche, B., Romain, O., Denby, B., Benaroya, L., Viateur, S.: FPGA-based radio-on-demand broadcast receiver with musical genre identification. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 1381–1385, May 2012Google Scholar
  417. 417.
    Tsai, W.H., Bao, D.F.: Clustering music recordings based on genres. In: Proceedings of the International Conference on Information Science and Applications (2010)Google Scholar
  418. 418.
    Tsatsishvili, V.: Automatic subgenre classification of heavy metal music. Master’s thesis, University of Jyväskylä, Nov 2011Google Scholar
  419. 419.
    Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Audio genre classification by clustering percussive patterns. In: Proceedings of the Acoustical Society of Japan (2009)Google Scholar
  420. 420.
    Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Audio genre classification using percussive pattern clustering combined with timbral features. In: Proceedings of the ICME (2009)Google Scholar
  421. 421.
    Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Beyond timbral statistics: improving music classification using percussive patterns and bass lines. IEEE Trans. Audio Speech Lang. Process. 19(4), 1003–1014 (2011)Google Scholar
  422. 422.
    Turnbull, D., Elkan, C.: Fast recognition of musical genres using RBF networks. IEEE Trans. Knowl. Data Eng. 17(4), 580–584 (2005)Google Scholar
  423. 423.
    Typke, R., Wiering, F., Veltkamp, R.C.: A survey of music information retrieval systems. In: Proceedings of the ISMIR, London, UK, Sept 2005Google Scholar
  424. 424.
    Tzagkarakis, C., Mouchtaris, A., Tsakalides, P.: Musical genre classification via generalized Gaussian and alpha-stable modeling. In: Proceedings of the ICASSP, May 2006Google Scholar
  425. 425.
    Tzanetakis, G., Essl, G., Cook, P.: Automatic music genre classification of audio signals. In: Proceedings of the ISMIR (2001)Google Scholar
  426. 426.
    Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293–302 (2002)Google Scholar
  427. 427.
    Tzanetakis, G.: Manipulation, analysis and retrieval systems for audio signals. Ph.D. thesis, Princeton University, June 2002Google Scholar
  428. 428.
    Tzanetakis, G., Ermolinskyi, A., Cook, P.: Pitch histograms in audio and symbolic music information retrieval. J. New Music Res. 32(2), 143–152 (2003)Google Scholar
  429. 429.
    Umapathy, K., Krishnan, S., Jimaa, S.: Multigroup classification of audio signals using time-frequency parameters. IEEE Trans. Multimed. 7(2), 308–315 (2005)Google Scholar
  430. 430.
    Valdez, N., Guevara, R.: Feature set for philippine gong music classification by indigenous group. In: Proceedings of the IEEE Region 10 Conference, pp. 339–343, Nov 2011Google Scholar
  431. 431.
    Vatolkin, I., Theimer, W.M., Botteck, M.: Partition based feature processing for improved music classification. In: Proceedings of the Annual Conference of the German Classification Society, pp. 411–419 (2010)Google Scholar
  432. 432.
    Vatolkin, I., Preuß, M., Rudolph, G.: Multi-objective feature selection in music genre and style recognition tasks. In: Genetic and Evolutionary Computation Conference (2011)Google Scholar
  433. 433.
    Vatolkin, I.: Multi-objective evaluation of music classification. In: Gaul, W.A., Geyer-Schulz, A., Schmidt-Thieme, L., Kunze, J. (eds.) Challenges at the Interface of Data Analysis, Computer Science, and Optimization, pp. 401–410. Springer, Berlin (2012)Google Scholar
  434. 434.
    Volk, A., van Kranenburg, P.: Melodic similarity among folk songs: an annotation study on similarity-based categorization in music. Musicae Scientiae 16(3), 317–339 (2012)Google Scholar
  435. 435.
    Völkel, T., Abeßer, J., Dittmar, C., Großmann, H.: Automatic genre classification of Latin music using characteristic rhythmic patterns. In: Proceedings of the Audio Mostly Conference, Piteå, Sweden (2010)Google Scholar
  436. 436.
    Wang, L., Huang, S., Wang, S., Liang, J., Xu, B.: Music genre classification based on multiple classifier fusion. In: Proceedings of the International Conference on Natural Computation (2008)Google Scholar
  437. 437.
    Wang, F., Wang, X., Shao, B., Li, T., Ogihara, M.: Tag integrated multi-label music style classification with hypergraph. In: Proceedings of the ISMIR (2009)Google Scholar
  438. 438.
    Wang, D., Li, T., Ogihara, M.: Are tags better than audio? The effect of joint use of tags and audio content features for artistic style clustering. In: Proceedings of the ISMIR, pp. 57–62 (2010)Google Scholar
  439. 439.
    Watanabe, S., Nemoto, M.: Reinforcing property of music in Java sparrows (Padda oryzivora). Behav. Process. 43(2), 211–218 (1998)Google Scholar
  440. 440.
    Watanabe, S., Sato, K.: Discriminative stimulus properties of music in Java sparrows. Behav. Process. 47(1), 53–57 (1999)MathSciNetGoogle Scholar
  441. 441.
    Watanabe, S.: How animals perceive music? Comparative study of discriminative and reinforcing properties of music for infrahuman animals. CARLS Series of Advanced Study of Logic and Sensibility vol. 2, pp. 5–16 (2008)Google Scholar
  442. 442.
    Weihs, C., Ligges, U., Morchen, F., Mullensiefen, D.: Classification in music research. Adv. Data Anal. Classif. 1(3), 255–291 (2007)MathSciNetMATHGoogle Scholar
  443. 443.
    Welsh, M., Borisov, N., Hill, J., von Behren, R., Woo, A.: Querying large collections of music for similarity. Technical report, University of California, Berkeley (1999)Google Scholar
  444. 444.
    West, K., Cox, S.: Features and classifiers for the automatic classification of musical audio signals. In: Proceedings of the ISMIR (2004)Google Scholar
  445. 445.
    West, K., Cox, S.: Finding an optimal segmentation for audio genre classification. In: Proceedings of the ISMIR, pp. 680–685 (2005)Google Scholar
  446. 446.
    West, K., Lamere, P.: A model-based approach to constructing music similarity functions. EURASIP J. Appl. Signal Process. 1(1), 149 (2007)Google Scholar
  447. 447.
    West, K.: Novel techniques for audio music classification and search. Ph.D. thesis, University of East Anglia (2008)Google Scholar
  448. 448.
    Whitman, B., Smaragdis, P.: Combining musical and cultural features for intelligent style detection. In: Proceedings of the ISMIR, Paris, France, Oct 2002Google Scholar
  449. 449.
    Wiggins, G.A.: Semantic gap?? Schemantic schmap!! Methodological considerations in the scientific study of music. In: Proceedings of the IEEE International Symposium on Multimedia, pp. 477–482, Dec 2009Google Scholar
  450. 450.
    Wu, M.J., Chen, Z.S., Jang, J.S.R., Ren, J.M.: Combining visual and acoustic features for music genre classification. In: International Conference on Machine Learning and Applications (2011)Google Scholar
  451. 451.
    Wülfing, J., Riedmiller, M.: Unsupervised learning of local features for music classification. In: Proceedings of the ISMIR, Porto, Portugal, Oct 2012Google Scholar
  452. 452.
    Xu, C., Maddage, M., Shao, X., Cao, F., Tian, Q.: Musical genre classification using support vector machines. In: Proceedings of the ICASSP (2003)Google Scholar
  453. 453.
    Yang, W., Yu, X., Deng, J., Pan, X., Wang, Y.: Audio classification based on fuzzy-rough nearest neighbour clustering. In: Proceedings of the International Conference on Wireless Communications and Mobile Computation, pp. 320–324 (2011)Google Scholar
  454. 454.
    Yang, X., Chen, Q., Zhou, S., Wang, X.: Deep belief networks for automatic music genre classification. In: Proceedings of the INTERSPEECH, pp. 2433–2436 (2011)Google Scholar
  455. 455.
    Yao, Q., Li, H., Sun, J., Ma, L.: Visualized feature fusion and style evaluation for musical genre analysis. In: International Conference on Pervasive Computing, Signal Processing and Applications (2010)Google Scholar
  456. 456.
    Yaslan, Y., Cataltepe, Z.: Audio music genre classification using different classifiers and feature selection methods. In: Proceedings of the ICPR, pp. 573–576 (2006)Google Scholar
  457. 457.
    Yeh, C.C.M., Yang, Y.H.: Supervised dictionary learning for music genre classification. In: Proceedings of the ACM International Conference on Multimedia Retrieval, Hong Kong, China, June 2012Google Scholar
  458. 458.
    Ying, T.C., Doraisamy, S., Abdullah, L.N.: Genre and mood classification using lyric features. In: International Conference on Information Retrieval and Knowledge Management (2012)Google Scholar
  459. 459.
    Yoon, W.-J., Lee, K.-K., Park, K.-S., Yoo, H.-Y.: Automatic classification of western music in digital library. In: Fox, E.A., Neuhold, E.J., Premsmit, P., Wuwongse, V. (eds.) ICADL 2005. LNCS, vol. 3815, pp. 293–300. Springer, Heidelberg (2005)Google Scholar
  460. 460.
    Zanoni, M., Ciminieri, D., Sarti, A., Tubaro, S.: Searching for dominant high-level features for music information retrieval. In: Proceedings of the EUSIPCO, Bucharest, Romania, pp. 2025–2029, Aug 2012Google Scholar
  461. 461.
    Zeng, Z., Zhang, S., Li, H., Liang, W., Zheng, H.: A novel approach to musical genre classification using probabilistic latent semantic analysis model. In: Proceedings of the ICME, pp. 486–489 (2009)Google Scholar
  462. 462.
    Zhang, Y., Zhou, J.: A study on content-based music classification. In: Proceedings of the International Symposium on Signal Processing and Its Applications, pp. 113–116, July 2003Google Scholar
  463. 463.
    Zhang, Y.B., Zhou, J., Wang, X.: A study on Chinese traditional opera. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 2476–2480, July 2008Google Scholar
  464. 464.
    Zhen, C., Xu, J.: Solely tag-based music genre classification. In: Proceedings of the International Conference on Web Information Systems and Mining (2010)Google Scholar
  465. 465.
    Zhen, C., Xu, J.: Multi-modal music genre classification approach. In: Proceedings of the IEEE International Conference on Computer Science and Information Technology (2010)Google Scholar
  466. 466.
    Zhou, G.T., Ting, K.M., Liu, F.T., Yin, Y.: Relevance feature mapping for content-based multimedia information retrieval. Pattern Recogn. 45, 1707–1720 (2012)Google Scholar
  467. 467.
    Zhu, J., Xue, X., Lu, H.: Musical genre classification by instrumental features. In: Proceedings of the ICMC (2004)Google Scholar
  468. 468.
    Fabbri, F.: A theory of musical genres: two applications. In: Proceedings of the International Conference on Popular Music Studies, Amsterdam, The Netherlands (1980)Google Scholar
  469. 469.
    Frow, J.: Genre. Routledge, New York (2005)Google Scholar
  470. 470.
    Bertin-Mahieux, T., Eck, D., Mandel, M.: Automatic tagging of audio: the state-of-the-art. In: Wang, W. (ed.) Machine Audition: Principles, Algorithms and Systems. IGI Publishing, Hershey (2010)Google Scholar
  471. 471.
    Kim, Y., Schmidt, E., Migneco, R., Morton, B., Richardson, P., Scott, J., Speck, J., Turnbull, D.: Music emotion recognition: a state of the art review. In: Proceedings of the ISMIR, pp. 255–266 (2010)Google Scholar
  472. 472.
    Soltau, H.: Erkennung von Musikstilen. Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany, May 1997Google Scholar
  473. 473.
    Kiernan, F.J.: Score-based style recognition using artificial neural networks. In: Proceedings of the ISMIR (2000)Google Scholar
  474. 474.
    Avcu, N., Kuntalp, D., Alpkocak, V.A.: Musical genre classification using higher-order statistics. In: Proceedings of the IEEE Signal Processing and Communication Applications Conference, pp. 1–4, June 2007Google Scholar
  475. 475.
    Bagci, U., Erzin, E.: Inter genre similarity modeling for automatic music genre classification. In: Proceedings of the IEEE Signal Processing and Communications Applications, pp. 1–4, Apr 2006Google Scholar
  476. 476.
    Herkiloglu, K., Gursoy, O., Gunsel, B.: Music genre determination using audio fingerprinting. In: Proceedings of the IEEE Signal Processing and Communications Applications, pp. 1–4, Apr 2006Google Scholar
  477. 477.
    Sonmez, A.: Music genre and composer identification by using Kolmogorov distance. Master’s thesis, Istanbul Technical University, Istanbul, Turkey (2005)Google Scholar
  478. 478.
    Yaslan, Y., Cataltepe, Z.: Music genre classification using audio features, different classifiers and feature selection methods. In: Proceedings of the IEEE Signal Processing and Communications Applications, pp. 1–4, Apr 2006Google Scholar
  479. 479.
    Yaslan, Y., Cataltepe, Z.: Audio genre classification with co-MRMR. In: Proceedings of the IEEE Signal Processing and Communications Applications, pp. 408–411, Apr 2009Google Scholar
  480. 480.
    Allamanche, E., Kastner, T., Wistorf, R., Lefebvre, N., Herre, J.: Music genre estimation from low level audio features. In: Proceedings of the International Audio Engineering Society Conference (2004)Google Scholar
  481. 481.
    Seo, J.S.: An informative feature selection method for music genre classification. Trans. Japanese Eng. Tech. Org. 94–D(6), 1362–1365 (2011)Google Scholar
  482. 482.
    Berenzweig, A., Logan, B., Ellis, D.P.W., Whitman, B.: A large-scale evaluation of acoustic and subjective music-similarity measures. Comput. Music J. 28(2), 63–76 (2004)Google Scholar
  483. 483.
    Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music genre database and musical instrument sound database. In: Proceedings of the ISMIR (2003)Google Scholar
  484. 484.
    Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the ISMIR (2011)Google Scholar
  485. 485.
    Law, E.: Human computation for music classification. In: Li, T., Ogihara, M., Tzanetakis, G. (eds.) Music Data Mining, pp. 281–301. CRC Press, Boca Raton (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Audio Analysis Lab, AD:MTAalborg University CopenhagenCopenhagen SVDenmark

Personalised recommendations