Skip to main content

SKETCHify – An Adaptive Prominent Edge Detection Algorithm for Optimized Query-by-Sketch Image Retrieval

  • Conference paper
  • First Online:
  • 813 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8382))

Abstract

Query-by-Sketch image retrieval, unlike content based image retrieval following a Query-by-Example approach, uses human-drawn binary sketches as query objects, thereby eliminating the need for an initial query image close enough to the users’ information need. This is particularly important when the user is looking for a known image, i.e., an image that has been seen before. So far, Query-by-Sketch has suffered from two main limiting factors. First, users tend to focus on the objects’ main contours when drawing binary sketches, while ignoring any texture or edges inside the object(s) and in the background. Second, the users’ limited ability to sketch the known item being searched for in the correct position, scale and/or orientation. Thus, effective Query-by-Sketch systems need to allow users to concentrate on the main contours of the main object(s) they are searching for and, at the same time, tolerate such inaccuracies. In this paper, we present SKETCHify, an adaptive algorithm that is able to identify and isolate the prominent objects within an image. This is achieved by applying heuristics to detect the best edge map thresholds for each image by monitoring the intensity, spatial distribution and sudden spike increase of edges with the intention of generating edge maps that are as close as possible to human-drawn sketches. We have integrated SKETCHify into QbS, our system for Query-by-Sketch image retrieval, and the results show a significant improvement in both retrieval rank and retrieval time when exploiting the prominent edges for retrieval, compared to Query-by-Sketch relying on normal edge maps. Depending on the quality of the query sketch, SKETCHify even allows to provide invariances with regard to position, scale and rotation in the retrieval process. For the evaluation, we have used images from the MIRFLICKR-25K dataset and a free clip art collection of similar size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://lucene.apache.org/

  2. 2.

    http://press.liacs.nl/mirflickr/

References

  1. Bober, M.: MPEG-7 visual shape descriptors. IEEE Trans. Circ. Syst. Video Technol. 11(6), 716–719 (2001)

    Article  Google Scholar 

  2. Bruce, N., Tsotsos, J.: Attention based on information maximization. J. Vis. 7(9), 950–950 (2007)

    Article  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8, 679–698 (1986)

    Article  Google Scholar 

  4. Cao, Y., Wang, C., Zhang, L., Zhang, L.: Edgel inverted index for large-scale sketch-based image search. In: CVPR (2011)

    Google Scholar 

  5. Chalechale, A., Naghdy, G., Mertins, A.: Sketch-based image matching using angular partitioning. IEEE Trans. Syst. Man Cybern. 35(1), 28–41 (2005)

    Article  Google Scholar 

  6. Chang, S., Sikora, T., Puri, A.: Overview of the MPEG-7 standard. IEEE Trans. Circ. Syst. Video Technol. 11(6), 688–695 (2001)

    Article  Google Scholar 

  7. Del Bimbo, A., Pala, P.: Visual image retrieval by elastic matching of user sketches. IEEE Trans. PAMI 19(2), 121–132 (1997)

    Article  Google Scholar 

  8. Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: A descriptor for large scale image retrieval based on sketched feature lines. In: ACM SBIM, August 2009

    Google Scholar 

  9. Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: PhotoSketch: a sketch based image query and compositing system. In: SIGGRAPH (2009)

    Google Scholar 

  10. Fang, M., Yue, G.X., Yu, Q.C.: The study on an application of Otsu method in canny operator. In: Proceedings of the International Symposium on Information Processing (ISIP’09), vol. 2, pp. 109–112 (2009)

    Google Scholar 

  11. Flickner, M., et al.: Query by image and video content: the QBIC system. Computer 28(9), 23–32 (1995)

    Article  Google Scholar 

  12. Hirata, K., Kato, T.: Query by visual example. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 56–71. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  13. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)

    Article  Google Scholar 

  14. Keysers, D., Deselaers, T., Gollan, C., Ney, H.: Deformation models for image recognition. IEEE Trans. PAMI 29(8), 1422–1435 (2007)

    Article  Google Scholar 

  15. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  16. Kreuzer, R., Springmann, M., Kabary, I.A., Schuldt, H.: An interactive paper and digital pen interface for query-by-sketch image retrieval. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 317–328. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Liu, H., Jezek, K.: Automated extraction of coastline from satellite imagery by integrating canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 25, 937–958 (2004)

    Article  Google Scholar 

  18. Lu, J., Ren, J., Lu, Y., Yuan, X., Wang, C.: A modified canny algorithm for detecting sky-sea line in infrared images. Int. Conf. Intell. Syst. Des. Appl. 2, 289–294 (2006)

    Google Scholar 

  19. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. PAMI 26, 530–549 (2004)

    Article  Google Scholar 

  20. Springmann, M., Kopp, D., Schuldt, H.: QbS - searching for known images using user-drawn sketches. In: Proceedings of MIR 2010, pp. 417–420 (2010)

    Google Scholar 

  21. Zhang, L., Marks, T., Tong, M., Shan, H., Cottrell, G.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 1–20 (2008)

    Article  Google Scholar 

  22. Ziou, D., Tabbone, S.: Edge detection techniques - an overview. Int. J. Pattern Recogn. Image Anal. 8, 537–559 (1998)

    Google Scholar 

Download references

Acknowledgments

The work has been partly supported by the Swiss National Science Foundation, projects PAD-IR (No. 200020_126829) and MM-DocTable (No. 200020_137944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihab Al Kabary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Al Kabary, I., Schuldt, H. (2014). SKETCHify – An Adaptive Prominent Edge Detection Algorithm for Optimized Query-by-Sketch Image Retrieval. In: Nürnberger, A., Stober, S., Larsen, B., Detyniecki, M. (eds) Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation. AMR 2012. Lecture Notes in Computer Science(), vol 8382. Springer, Cham. https://doi.org/10.1007/978-3-319-12093-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12093-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12092-8

  • Online ISBN: 978-3-319-12093-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics