Skip to main content

COSFIRE: A Brain-Inspired Approach to Visual Pattern Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Abstract

The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a century. The construction of computational models of visual neurons can help us gain insight in the processing of information in visual cortex which we can use to provide more robust solutions to computer vision applications. Here, we demonstrate how inspiration from the functions of shape-selective V4 neurons can be used to design trainable filters for visual pattern recognition. We call this approach COSFIRE, which stands for Combination of Shifted Filter Responses. We illustrate how a COSFIRE filter can be configured to be selective for the spatial arrangement of lines and/or edges that form the shape of a given prototype pattern. Finally, we demonstrate the effectiveness of the COSFIRE approach in three applications: the detection of vascular bifurcations in retinal fundus images, the localization and recognition of traffic signs in complex scenes and the recognition of handwritten digits. This work is a further step in understanding how visual information is processed in the brain and how information on pixel intensities is converted into information about objects. We demonstrate how this understanding can be used for the design of effective computer vision algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Traffic sign data set is online: http://www.cs.rug.nl/imaging/databases/traffic_sign_database/traffic_sign_database.html.

  2. 2.

    The Matlab and C++/OpenCV implementations of COSFIRE can be downloaded from http://matlabserver.cs.rug.nl.

References

  1. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. a-Optics Image Sci. Vis. 2(2), 284–299 (1985)

    Article  Google Scholar 

  2. Albrecht, D.G., De Valois, R.L., Thorell, L.G.: Visual cortical-neurons - are bars or gratings the optimal stimuli. Science 207(4426), 88–90 (1980)

    Article  Google Scholar 

  3. Andrews, B.W., Pollen, D.A.: Relationship between spatial-frequency selectivity and receptive-field profile of simple cells. J. Physiol. Lond. 287, 163–176 (1979)

    Google Scholar 

  4. Azzopardi, G., Petkov, N.: A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model. Biol. Cybern. 106(3), 177–189 (2012)

    Article  Google Scholar 

  5. Azzopardi, G., Petkov, N.: Contour detection by CORF operator. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 395–402. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Azzopardi, G., Petkov, N.: A shape descriptor based on trainable COSFIRE filters for the recognition of handwritten digits. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 9–16. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Azzopardi, G., Petkov, N.: Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recogn. Lett. 34(8), 922–933 (2013)

    Article  Google Scholar 

  8. Azzopardi, G., Petkov, N.: Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 490–503 (2013)

    Article  Google Scholar 

  9. Bovik, A.C.: Analysis of multichannel narrow-band-filters for image texture segmentation. IEEE Trans. Signal Process. 39(9), 2025–2043 (1991)

    Article  Google Scholar 

  10. Cristobal, G., Navarro, R.: Space and frequency variant image-enhancement based on a gabor representation. Pattern Recogn. Lett. 15(3), 273–277 (1994)

    Article  MATH  Google Scholar 

  11. Daugman, J.G.: Uncertainty relation for resolution in space, spatial-frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. a-Optics Image Sci. Vis. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  12. Daugman, J.G.: Complete discrete 2-d gabor transforms by neural networks for image-analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 36(7), 1169–1179 (1988)

    Article  MATH  Google Scholar 

  13. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  14. De Valois, K.K., De Valois, R.L., Yund, E.W.: Responses of striate cortex cells to grating and checkerboard patterns. J. Physiol. (Lond.) 291, 483–505 (1979)

    Google Scholar 

  15. De Valois, R.L., Albrecht, D.G., Thorell, L.G.: Cortical cells: bar and edge detectors, or spatial frequency filters? In: S.J. Cool and III Smith, E. L. (eds.) Frontiers in Visual Science, pp. 544–56. Springer, Berlin (1978): Frontiers in Visual Science, Houston, TX, USA, March 1977

    Google Scholar 

  16. Fidler, S., Leonardis, A.: Towards scalable representations of object categories: Learning a hierarchy of parts. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1–8, pp. 2295–2302 (2007)

    Google Scholar 

  17. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1989)

    Article  Google Scholar 

  18. Gheorghiu, E., Kingdom, F.A.A.: Multiplication in curvature processing. J. Vis. 9(2), 1–7 (2009)

    Article  Google Scholar 

  19. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15(1), 20–25 (1992)

    Article  Google Scholar 

  20. Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Trans. Image Process. 12(10), 1274–1286 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour detection based on nonclassical receptive field inhibition. IEEE Trans. Image Process. 12(7), 729–739 (2003)

    Article  Google Scholar 

  22. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour and boundary detection improved by surround suppression of texture edges. Image Vis. Comput. 22(8), 609–622 (2004)

    Article  Google Scholar 

  23. Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on gabor filters. IEEE Trans. Image Process. 11(10), 1160–1167 (2002)

    Article  MathSciNet  Google Scholar 

  24. Hanazawa, A., Komatsu, H.: Influence of the direction of elemental luminance gradients on the responses of v4 cells to textured surfaces. J. Neurosci. 21(12), 4490–4497 (2001)

    Google Scholar 

  25. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  26. Hubel, D.H.: Exploration of the primary visual-cortex, 1955–78. Nature 299(5883), 515–524 (1982)

    Article  Google Scholar 

  27. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in cats visual cortex. J. Physiol. (Lond.) 160(1), 106–154 (1962)

    Google Scholar 

  28. Hubel, D.H., Wiesel, T.N.: Sequence regularity and geometry of orientation columns in monkey striate cortex. J. Comp. Neurol. 158(3), 267–294 (1974)

    Article  Google Scholar 

  29. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  30. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive-fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987)

    Google Scholar 

  31. Khosravi, H., Kabir, E.: Introducing a very large dataset of handwritten Farsi digits and a study on their varieties. Pattern Recogn. Lett. 28(10), 1133–1141 (2007)

    Article  Google Scholar 

  32. Kovesi, P.: Image features from phase congruency. Videre 1(3), 1–27 (1999)

    Google Scholar 

  33. Kulikowski, J.J., Bishop, P.O.: Fourier-analysis and spatial representation in the visual-cortex. Experientia 37(2), 160–163 (1981)

    Article  Google Scholar 

  34. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2, pp. 97–104 (2004)

    Google Scholar 

  35. Macleod, I.D.G., Rosenfeld, A.: Visibility of gratings - spatial frequency channels or bar-detecting units. Vision. Res. 14(10), 909–915 (1974)

    Article  Google Scholar 

  36. Manjunath, B.S., Shekhar, C., Chellappa, R.: A new approach to image feature detection with applications. Pattern Recogn. 29(4), 627–640 (1996)

    Article  Google Scholar 

  37. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge-detection. Pattern Recogn. 25(12), 1479–1494 (1992)

    Article  Google Scholar 

  38. Pasupathy, A., Connor, C.E.: Responses to contour features in macaque area v4. J. Neurophysiol. 82(5), 2490–2502 (1999)

    Google Scholar 

  39. Pasupathy, A., Connor, C.E.: Shape representation in area v4: Position-specific tuning for boundary conformation. J. Neurophysiol. 86(5), 2505–2519 (2001)

    Google Scholar 

  40. Pasupathy, A., Connor, C.E.: Population coding of shape in area v4. Nat. Neurosci. 5(12), 1332–1338 (2002)

    Article  Google Scholar 

  41. Petkov, N.: Biologically motivated computationally intensive approaches to image pattern-recognition. Future Gener. Comput. Syst. 11(4–5), 451–465 (1995)

    Article  Google Scholar 

  42. Petkov, N., Subramanian, E.: Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal gabor filters with surround inhibition. Biol. Cybern. 97(5–6), 423–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Petkov, N., Westenberg, M.A.: Suppression of contour perception by band-limited noise and its relation to non-classical receptive field inhibition. Biol. Cybern. 88(10), 236–246 (2003)

    Article  MATH  Google Scholar 

  44. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  45. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. AI Memo 2005–036/CBCL Memo 259, Massachusetts Inst. of Technology, Cambridge (2005)

    Google Scholar 

  46. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  47. Shapley, R., Caelli, T., Morgan, M., Rentschler, I.: Computational theories of visual perception. In: Spillmann, L., Werner, J.S. (eds.) Visual Perception: The Neurophysiological Foundations, pp. 417–448. Academic, New York (1990)

    Chapter  Google Scholar 

  48. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  49. Tan, T.N.: Texture edge-detection by modeling visual cortical channels. Pattern Recogn. 28(9), 1283–1298 (1995)

    Article  Google Scholar 

  50. Turner, M.R.: Texture-discrimination by gabor functions. Biol. Cybern. 55(2–3), 71–82 (1986)

    Google Scholar 

  51. Tyler, C.W.: Selectivity for spatial-frequency and bar width in cat visual-cortex. Vis. Res. 18(1), 121–122 (1978)

    Article  MathSciNet  Google Scholar 

  52. Ungerleider, L.G., Mishkin, M.: Two Cortical Visual Systems. MIT Press, Cambridge (1982)

    Google Scholar 

  53. Von Der Heydt, R.: Approaches to visual cortical function. Rev. Physiol. Biochem. Pharmacol. 108, 69–150 (1987)

    Article  Google Scholar 

  54. Wu, P., Manjunath, B.S., Newsam, S., Shin, H.D.: A texture descriptor for browsing and similarity retrieval. Signal Process.-Image Commun. 16(1–2), 33–43 (2000)

    Article  Google Scholar 

  55. Zeki, S.M.: Color coding in rhesus-monkey prestriate cortex. Brain Res. 53(2), 422–427 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Azzopardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Azzopardi, G., Petkov, N. (2014). COSFIRE: A Brain-Inspired Approach to Visual Pattern Recognition. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics