A Generic Model of Visual Selective Attention

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8603)


We present a computational model for the understanding of the fundamental principles of visual selective attention. The model has important medical, social and engineering applications that could benefit the general public. The design of the model is guided by the state of the art in neurophysiological evidence and its performance has been evaluated by comparisons to behavioral data from psychological studies.

The model effectively links low level neural interactions with behavioral data, thus providing concrete explanations for psychological phenomena. The model was used to simulate finding from several behavioral experiments on visual selective attention, with emphasis on those eliciting controversies in the scientific literature.


Visual selective attention Computational modeling Saliency map Spiking neural network 


  1. 1.
    Barkley, R.A.: Behavioral inhibition, sustained attention, and executive functions constructing a unifying theory of ADHD. Psychol. Bull. 121, 65–94 (1997)CrossRefGoogle Scholar
  2. 2.
    Laurens, K.R., Kiehl, K.A., Ngan, E.T., Liddle, P.F.: Attention orienting dysfunction during salient novel stimulus processing in schizophrenia. Schizophrenia Res. 75, 159–171 (2005)CrossRefGoogle Scholar
  3. 3.
    Posner, M.I., Rothbart, M.K.: Research on attention networks as a model for the integration of psychological science. Ann. Rev. Psychol. 58, 1–23 (2007)CrossRefGoogle Scholar
  4. 4.
    Buschman, J., Miller, K.: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315(5820), 1860–1862 (2007)CrossRefGoogle Scholar
  5. 5.
    Corbetta, M., Patel, G., Shulman, L.G.: The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3), 306–324 (2008)CrossRefGoogle Scholar
  6. 6.
    Kastner, S., Ungerleider, L.G.: Mechanisms of visual attention in the human cortex. Ann. Rev. Neurosci. 23, 315–341 (2000)CrossRefGoogle Scholar
  7. 7.
    Raymond, J.E., Shapiro, K.L., Arnell, K.M.: Temporary suppression of visual processing in an RSVP task: An attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18(3), 849–860 (1992)CrossRefGoogle Scholar
  8. 8.
    Neokleous, Kleanthis C., Avraamides, Marios N., Neocleous, Costas K., Schizas, Christos N.: A neural network computational model of visual selective attention. In: Palmer-Brown, Dominic, Draganova, Chrisina, Pimenidis, Elias, Mouratidis, Haris (eds.) EANN 2009. CCIS, vol. 43, pp. 350–358. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Neokleous, C.K., Avraamides, N.M., Neocleous, K.C., Schizas, C.N.: A neural network model of the attentional blink phenomenon. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 17, 115–126 (2009)Google Scholar
  10. 10.
    Lavie, N.: Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 21(3), 451–468 (1995)CrossRefGoogle Scholar
  11. 11.
    Neokleous, K.C., Avraamides, M.N., Schizas, C.N.: Computational modeling of visual selective attention based on correlation and synchronization of neural activity. In: Iliadis, L., Vlahavas, I., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations III, pp. 215–223. Springer, Boston (2009)CrossRefGoogle Scholar
  12. 12.
    Neokleous, K.C., Koushiou, M., Avraamides, M.N., Schizas, C.N.: A coincidence detector neural network model of selective attention. In: Proceedings of the 31st Annual Meeting of the Cognitive Science Society, Amsterdam, The Netherlands (2009)Google Scholar
  13. 13.
    Desimone, R., Duncan, J.: Neural mechanisms of selective visual-attention. Ann. Rev. Neurosci. 18, 193–222 (1995)CrossRefGoogle Scholar
  14. 14.
    Reynolds, J.H., Desimone, R.: Interacting roles of attention and visual salience in V4. Neuron 37, 853–863 (2003)CrossRefGoogle Scholar
  15. 15.
    Reynolds, J.H., Pasternak, T., Desimone, R.: Attention increases sensitivity of V4 neurons. Neuron 26(3), 703–714 (2000)CrossRefGoogle Scholar
  16. 16.
    Ioannides, A.A., Poghosyan, V.: Spatiotemporal dynamics of early spatial and category-specific attentional modulations. NeuroImage 60, 1638–1651 (2012)CrossRefGoogle Scholar
  17. 17.
    Nothdurft, H.C., Gallant, J.L., Van Essen, D.C.: Response modulation by texture surround in primate area V1: Correlates of popout under anesthesia. Vis. Neurosci. 1999(16), 15–34 (1999)Google Scholar
  18. 18.
    Wachtler, T., Sejnowski, T.J., Albright, T.D.: Representation of color stimuli in awake macaque primary visual cortex. Neuron 37(4), 681–691 (2003)CrossRefGoogle Scholar
  19. 19.
    Shibata, K., Yamagishi, N., Goda, N., Yoshioka, T., Yamashita, O., Sato, M.A., Kawato, M.: The effects of feature attention on pre-stimulus cortical activity in the human visual system. Cereb. Cortex 18, 1664–1675 (2008)CrossRefGoogle Scholar
  20. 20.
    VanRullen, R.: Visual saliency and spike timing in the ventral visual pathway. J. Physiol. 97, 365–377 (2003)Google Scholar
  21. 21.
    Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R.: A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993)CrossRefGoogle Scholar
  22. 22.
    Fries, P., Reynolds, J.H., Rori, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001)CrossRefGoogle Scholar
  23. 23.
    Gregoriou, G.G., Stephen, J.G., Huihui, Z., Desimone, R.: High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324(5931), 1207–1210 (2009)CrossRefGoogle Scholar
  24. 24.
    Rolls, E.T., Deco, G.: The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. Oxford University Press, Oxford (2010)Google Scholar
  25. 25.
    Koch, C., Ullman, S.: Shifts in selective visual attention: Towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)Google Scholar
  26. 26.
    Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19, 1395–1407 (2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhaoping, L., Dayan, P.: Pre-attentive visual selection. Neural Netw. 19, 1437–1439 (2006)CrossRefGoogle Scholar
  28. 28.
    Silver, M.A., Ress, D., Heeger, D.J.: Neural correlates of sustained spatial attention in human early visual cortex. J. Neurophysiol. 97, 229–237 (2007)CrossRefGoogle Scholar
  29. 29.
    Shibata, K., Yamagishi, N., Goda, N., Yoshioka, T., Yamashita, O., Sato, M.A., Kawato, M.: The effects of feature attention on pre-stimulus cortical activity in the human visual system. Cereb. Cortex 18, 1664–1675 (2008)CrossRefGoogle Scholar
  30. 30.
    Crick, F., Koch, C.: Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275 (1990)Google Scholar
  31. 31.
    Spruston, N.: Pyramidal neurons: Dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008)CrossRefGoogle Scholar
  32. 32.
    Treue, S.: Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol. 13, 428–432 (2003)CrossRefGoogle Scholar
  33. 33.
    Ogawa, T., Komatsu, H.: Target selection in area V4 during a multidimensional visual search task. J. Neurosci. 24, 6371–6382 (2004)CrossRefGoogle Scholar
  34. 34.
    Rolls, E.T., Tovee, M.J., Panzeri, S.: The neurophysiology of backward visual masking: Information analysis. J. Cogn. Neurosci. 11, 300–311 (1999)CrossRefGoogle Scholar
  35. 35.
    Keysers, C., Perrett, D.I.: Visual masking and RSVP reveal neural competition. Trends Cogn. Sci. 6, 120–125 (2002)CrossRefGoogle Scholar
  36. 36.
    Ioannides, A.A., Taylor, J.G.: Testing models of attention with MEG. In: Proceedings of the IJCNN’03, pp. 287–297 (2003)Google Scholar
  37. 37.
    Luck, S.J.: The operation of attention—millisecond by millisecond—over the first half second. In: Ogmen, H., Breitmeyer, B.G. (eds.) The First Half Second: The Microgenesis and Temporal Dynamics of Unconscious and Conscious Visual Processes. MIT Press, Cambridge (2005)Google Scholar
  38. 38.
    Naccache, L., Blandin, E., Dehaene, S.: Unconscious masked priming depends on temporal attention. Psychol. Sci. 13, 416–424 (2002)CrossRefGoogle Scholar
  39. 39.
    Neokleous, K.C., Avraamides, M.N., Neokelous, C.K., Schizas, C.N.: Selective attention and consciousness: Investigating their relation through computational modeling. Cogn. Comput. 3, 321–331 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  2. 2.Department of PsychologyUniversity of CyprusNicosiaCyprus

Personalised recommendations