Integrating Brain Structure and Dynamics on Supercomputers

  • S. J. van AlbadaEmail author
  • S. Kunkel
  • A. Morrison
  • M. Diesmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8603)


Large-scale simulations of neuronal networks provide a unique view onto brain dynamics, complementing experiments, small-scale simulations, and theory. They enable the investigation of integrative models to arrive at a multi-scale picture of brain dynamics relating macroscopic imaging measures to the microscopic dynamics. Recent years have seen rapid development of the necessary simulation technology. We give an overview of design features of the NEural Simulation Tool (NEST) that enable simulations of spiking point neurons to be scaled to hundreds of thousands of processors. The performance of supercomputing applications is traditionally assessed using scalability plots. We discuss reasons why such measures should be interpreted with care in the context of neural network simulations. The scalability of neural network simulations on available supercomputers is limited by memory constraints rather than computational speed. This calls for future generations of supercomputers that are more attuned to the requirements of memory-intensive neuroscientific applications.


Computational neuroscience Neural networks Scalability Simulation technology 



This work was supported by JUQUEEN grant JINB33 of the Jülich Supercomputing Centre, EU grants 269921 (BrainScaleS) and 604102 (Human Brain Project), the Helmholtz Alliance on Systems Biology, the Next-Generation Supercomputing Project of MEXT, and the Helmholtz Association in the Portfolio Theme Supercomputing and Modeling for the Human Brain.


  1. 1.
    Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  2. 2.
    Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24, 785–806 (2014)CrossRefGoogle Scholar
  3. 3.
    Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., Knoblauchi, K., Van Essen, D.C.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014)CrossRefGoogle Scholar
  4. 4.
    Meyer, H.S., Egger, R., Guest, J.M., Foerster, R., Reissl, S., Oberlaender, M.: Cellular organization of cortical barrel columns is whisker-specific. PNAS 110, 19113–19118 (2013)CrossRefGoogle Scholar
  5. 5.
    Collins, C.E., Airey, D.C., Young, N.A., Leitch, D.B., Kaas, J.H.: Neuron densities vary across and within cortical areas in primates. PNAS 107, 15927–15932 (2010)CrossRefGoogle Scholar
  6. 6.
    Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)CrossRefGoogle Scholar
  7. 7.
    Kerr, J.N.D., Greenberg, D., Helmchen, F.: Imaging input and output of neocortical networks in vivo. PNAS 102, 14063–14068 (2005)CrossRefGoogle Scholar
  8. 8.
    Greenberg, D.S., Houweling, A.R., Kerr, J.N.D.: Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751 (2008)CrossRefGoogle Scholar
  9. 9.
    Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T., Kawano, K., Inaba, N., Fukushima, K., Kurkin, S., Kurata, K., Taira, M., Tsutsui, K.-I., Komatsu, H., Ogawa, T., Koida, K., Tanji, J., Toyama, K.: Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput. Biol. 5, e1000433 (2009)CrossRefGoogle Scholar
  10. 10.
    Hines, M., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997)CrossRefGoogle Scholar
  11. 11.
    Bower, J.M., Beeman, D.: The Book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Stewart, T.C., Tripp, B., Eliasmith, C.: Python scripting in the Nengo simulator. Front. Neuroinf. 3, 7 (2009)Google Scholar
  13. 13.
    Goodman, D.F.M., Brette, R.: The Brian simulator. Front. Neurosci. 3, 192–197 (2009)CrossRefGoogle Scholar
  14. 14.
    Morrison, A., Straube, S., Plesser, H.E., Diesmann, M.: Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput. 19, 47–79 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., Diesmann, M.: A general and efficient method for incorporating precise spike times in globally time-driven simulations. Front. Neuroinform. 4, 113 (2010)Google Scholar
  16. 16.
    Goddard, N.H., Hood, G.: Parallel GENESIS for large-scale modeling. In: Computational Neuroscience, pp. 911–917. Springer, New York (1997)Google Scholar
  17. 17.
    Howell, F.W., Dyhrfjeld-Johnsen, J., Maex, R., Goddard, N., de Schutter, E.: A large-scale model of the cerebellar cortex using PGENESIS. Neurocomputing 32, 1041–1046 (2000)CrossRefGoogle Scholar
  18. 18.
    Migliore, M., Cannia, C., Lytton, W.W., Markram, H., Hines, M.: Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–223 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hines, M., Kumar, S., Schürmann, F.: Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci. 5, 49 (2011)CrossRefGoogle Scholar
  20. 20.
    Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., Lansner, A.: Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM J. Res. Dev. 52, 31–41 (2008)CrossRefGoogle Scholar
  21. 21.
    Hoang, R.V., Tanna, D., Bray, L.C.J., Dascalu, S.M., Harris Jr., F.C.: A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Front. Neuroinf. 7, 19 (2013)Google Scholar
  22. 22.
    Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out of the bag: Cortical simulations with \(10^9\) neurons and \(10^{13}\) synapses. In: Supercomputing 09: Proceedings of the ACM/IEEE SC2009 Conference on High Performance Networking and Computing, pp. 1–12. IEEE, Portland (2009)Google Scholar
  23. 23.
    Preissl, R., Wong, T.M., Datta, P., Flickner, M., Singh, R., Esser, S.K., Risk, W.P., Simon, H.D., Modha, D.S.: Compass: a scalable simulator for an architecture for cognitive computing. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 54:1–54:11. IEEE Computer Society Press, Los Alamitos (2012)Google Scholar
  24. 24.
    Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J.M., Ishii, S., Fukai, T., Morrison, A., Diesmann, M.: Supercomputers ready for use as discovery machines for neuroscience. Front. Neuroinform. 6, 26 (2012)Google Scholar
  25. 25.
    RIKEN BSI: Largest neuronal network simulation achieved using K computer. Press release, 2 August 2013Google Scholar
  26. 26.
    Eppler, J.M., Helias, M., Muller, E., Diesmann, M., Gewaltig, M.-O.: PyNEST: a convenient interface to the NEST simulator. Front. Neuroinf. 2, 12 (2009)Google Scholar
  27. 27.
    Zaytsev, Y.V., Morrison, A.: CyNEST: a maintainable Cython-based interface for the NEST simulator. Front. Neuroinf. 8, 23 (2014)Google Scholar
  28. 28.
    Kunkel, S., Potjans, T.C., Eppler, J.M., Plesser, H.E., Morrison, A., Diesmann, M.: Meeting the memory challenges of brain-scale simulation. Front. Neuroinform. 5, 35 (2012)Google Scholar
  29. 29.
    Henker, S., Partzsch, J., Schüffny, R.: Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks. J. Comput. Neurosci. 32, 309–326 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zaytsev, Y.V., Morrison, A.: Increasing quality and managing complexity in neuroinformatics software development with continuous integration. Front. Neuroinf. 6, 31 (2012)Google Scholar
  32. 32.
    Davison, A., Brüderle, D., Eppler, J.M., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinf. 2, 11 (2008)Google Scholar
  33. 33.
    Diesmann, M.: The road to brain-scale simulations on K. BioSupercomputing Newsl. 8, 8 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. J. van Albada
    • 1
    Email author
  • S. Kunkel
    • 2
  • A. Morrison
    • 1
    • 2
    • 3
  • M. Diesmann
    • 1
    • 4
  1. 1.Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6)Jülich Research Centre and JARAJülichGermany
  2. 2.Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Institute for Advanced SimulationJülich Research Centre and JARAJülichGermany
  3. 3.Faculty of Psychology, Institute of Cognitive NeuroscienceRuhr-University BochumBochumGermany
  4. 4.Medical FacultyRWTH Aachen UniversityAachenGermany

Personalised recommendations