Skip to main content

Abstract

Several in situ recovery methods have been developed to extract heavy oil and bitumen from deep reservoirs. Once produced, bitumen is transferred to upgraders that convert low-quality oil to synthetic crude oil. However, the heavy oil and bitumen exploitation process is not just high-energy and water-intensive but also has a significant environmental footprint as it produces large amounts of gaseous emissions and wastewater. In addition, the level of contaminants in bitumen requires special equipment. Therefore, nanotechnology has emerged as an alternative technology for in situ heavy oil upgrading and recovery enhancement. Nanoparticle catalysts are an important example of nanotechnology applications. Nanocatalysts portray unique catalytic and sorption properties due to their exceptionally high surface area-to-volume ratio and active surface sites. In situ catalytic conversion or upgrading of heavy oil with the aid of multimetallic nanocatalysts is a promising cost-effective and environmentally friendly technology for production of high-quality oils that meet pipeline and refinery specifications. Further, nanoparticles could be employed as inhibitors for preventing or delaying asphaltene precipitation and coke formation and subsequently enhance oil recovery. Nevertheless, as with any new technologies, there are a number of challenges facing the employment of nanoparticles for in situ catalytic upgrading and recovery enhancement. The main goal of this chapter is to provide an overview of nanoparticle technology usage, such as ultradispersed nanomaterials, for enhancing the in situ catalytic upgrading and recovery processes of crude oil. Furthermore, the chapter sheds lights on the advantages of the employment of nanoparticles in the heavy oil industry and addresses some of the limitations and challenges facing this new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vapor extraction.

  2. 2.

    Expanding solvent SAGD.

  3. 3.

    Steam and gas push.

  4. 4.

    Toe-heel-air-injection.

  5. 5.

    Catalytic upgrading process in situ.

References

  1. Thomas, S. (2008). Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l'IFP, 63(1), 9-19.

    Google Scholar 

  2. Shah, A., Fishwick, R., Wood, J., Leeke, G., Rigby, S., & Greaves, M. (2010). A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science, 3(6), 700-714.

    Google Scholar 

  3. Dietz, D. N. (1967, April). Hot-water drive. In 7th World Petroleum Congress. OnePetro.

    Google Scholar 

  4. Curtis, C., Kopper, R., Decoster, E., Guzman-Garcia, A., Huggins, C., Knauer, L., Minner, M., Kupsch, N., Linares, L.M., Rough, H. & Waite, M. (2002). Heavy-oil reservoirs. Oilfield Review, 14(3), 30-51.

    Google Scholar 

  5. Lake, L. W., Schmidt, R. L., & Venuto, P. B. (1992). A niche for enhanced oil recovery in the 1990s. Oilfield Review;(Netherlands), 4(1).

    Google Scholar 

  6. Ali, S. M. (1982, March). Steam Injection Theories-A Unified Approach. In SPE California Regional Meeting. OnePetro.

    Google Scholar 

  7. Meldau, R. F. (1979). Current steamflood technology. J Petrol Technol, 31(10), 1332-1342.

    Google Scholar 

  8. Speight, J. G. (2013). Enhanced recovery methods for heavy oil and tar sands. Elsevier.

    Google Scholar 

  9. W. G. Graves, J.E.L.D. Cardenas, M. E. Gurfinkel, A. W. Peats, Heavy oil. 2007: Working Document of the NPC Global Oil & Gas Study

    Google Scholar 

  10. Owens, W. D., & Suter, V. E. (1965). Steam stimulation–newest form of secondary petroleum recovery. Oil and Gas J, 82-87.

    Google Scholar 

  11. Alberta Chamber of Resources. 2002: Oil Sands Technology Roadmap

    Google Scholar 

  12. Butler, R. M. (1985). A new approach to the modelling of steam-assisted gravity drainage. Journal of Canadian Petroleum Technology, 24(03), 42-51.

    Google Scholar 

  13. Akin, S., & Bagci, S. (2001). A laboratory study of single-well steam-assisted gravity drainage process. Journal of petroleum science and engineering, 32(1), 23-33.

    Google Scholar 

  14. Kamath, V. A., Sinha, S., & Hatzignatiou, D. G. (1993, May). Simulation study of steam-assisted gravity drainage process in ugnu tar sand reservoir. In SPE Western Regional Meeting. OnePetro.

    Google Scholar 

  15. Queipo, N. V., Goicochea, J. V., & Pintos, S. (2002). Surrogate modeling-based optimization of SAGD processes. Journal of Petroleum Science and Engineering, 35(1-2), 83-93.

    Google Scholar 

  16. S. Purkayastha, Control and Optimization of Steam Injection for Steam-Assisted Gravity Drainage (SAGD)

    Google Scholar 

  17. Das, S. K., & Butler, R. M. (1995, October). Extraction of heavy oil and bitumen using solvents at reservoir pressure. In Technical meeting/petroleum conference of the South Saskatchewan section. OnePetro.

    Google Scholar 

  18. Gates, I. D. (2007). Oil phase viscosity behaviour in expanding-solvent steam-assisted gravity drainage. Journal of Petroleum Science and Engineering, 59(1-2), 123-134.

    Google Scholar 

  19. Jiang, Q., Butler, R., & Yee, C. T. (1998, June). The steam and gas push (SAGP)-2: mechanism analysis and physical model testing. In Annual Technical Meeting. OnePetro.

    Google Scholar 

  20. Grant, B. F., & Szasz, S. E. (1954). Development of an underground heat wave for oil recovery. Journal of Petroleum Technology, 6(05), 23-33.

    Google Scholar 

  21. Howard, F. A. (1923). U.S. Patent No. 1,473,348. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  22. Wolcott, E. R. (1923). U.S. Patent No. 1,457,479. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  23. Ali, S. M. (1972). A current appraisal of in-situ combustion field tests. Journal of Petroleum Technology, 24(04), 477-486.

    Google Scholar 

  24. Brigham, W. E., Satman, A., & Soliman, M. Y. (1980). Recovery correlations for in-situ combustion field projects and application to combustion pilots. Journal of Petroleum Technology, 32(12), 2132-2138.

    Google Scholar 

  25. Chu, C. (1977). A study of fireflood field projects (includes associated paper 6504). Journal of Petroleum Technology, 29(02), 111-120.

    Google Scholar 

  26. Cheih, C. (1982). State-of-the-art review of fireflood field projects (includes associated papers 10901 and 10918). Journal of Petroleum Technology, 34(01), 19-36.

    Google Scholar 

  27. Lake, L. W. (1989). Enhanced oil recovery.

    Google Scholar 

  28. Martin, W. L., Alexander, J. D., & Dew, J. N. (1958). Process variables of in situ combustion. Transactions of the AIME, 213(01), 28-35.

    Google Scholar 

  29. Dietz, D. N., & Weijdema, J. (1968). Wet and partially quenched combustion. Journal of Petroleum Technology, 20(04), 411-415.

    Google Scholar 

  30. Greaves, M., & Al-Shamali, O. (1996). In situ combustion isc process using horizontal wells. Journal of Canadian Petroleum Technology, 35(04).

    Google Scholar 

  31. Greaves, M., Tuwil, A. A., & Bagci, A. S. (1993). Horizontal producer wells in in situ combustion (ISC) processes. Journal of Canadian Petroleum Technology, 32(04).

    Google Scholar 

  32. Kendall, R., Chopra, S., Lines, L. R., Schmitt, D. R., & Batzle, M. L. (2010). Using time-lapse seismic to monitor the toe-to-heel-air-injection (THAI™) heavy-oil production process. In Heavy Oils: Reservoir characterization and production monitoring (pp. 275-284). Society of Exploration Geophysicists.

    Google Scholar 

  33. Greaves, M., Xia, T. X., Turta, A. T., & Ayasse, C. (2000, April). Recent laboratory results of THAI and its comparison with other IOR processes. In SPE/DOE Improved Oil Recovery Symposium. OnePetro.

    Google Scholar 

  34. Ameli, F., Alashkar, A., & Hemmati-Sarapardeh, A. (2018). Thermal Recovery Processes. Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs.

    Google Scholar 

  35. Suncor, E., & Canadian Heavy Oil Association. (2005). Proceedings of the 2005 SPE/PS-CIM/CHOA International Thermal Operations and Heavy Oil Symposium: Heavy Oil: Integrating the Pieces.

    Google Scholar 

  36. Moore, R. G., Laureshen, C. J., Mehta, S. A., Ursenbach, M. G., Belgrave, J. D. M., Weissman, J. G., & Kessler, R. V. (1999). A downhole catalytic upgrading process for heavy oil using in situ combustion. Journal of Canadian Petroleum Technology, 38(13).

    Google Scholar 

  37. Weissman, J. G., Kessler, R. V., Sawicki, R. A., Belgrave, J. D. M., Laureshen, C. J., Mehta, S. A., ... & Ursenbach, M. G. (1996). Down-hole catalytic upgrading of heavy crude oil. Energy & fuels, 10(4), 883-889.

    Google Scholar 

  38. Weissman, J. G., & Kessler, R. V. (1996). Downhole heavy crude oil hydroprocessing. Applied Catalysis A: General, 140(1), 1-16.

    Google Scholar 

  39. Greaves, M., & Xia, T. (2001, June). CAPRI-Downhole catalytic process for upgrading heavy oil: Produced oil properties and composition. In Canadian international petroleum conference. OnePetro.

    Google Scholar 

  40. Secure Fuels from Domestic Resources, The Continuing Evolution of America’s Oil Shale and Tar Sands Industries (U.S. Department of Energy, 2007), pp. 28–29

    Google Scholar 

  41. Husein, M. M., & Nassar, N. N. (2008). Nanoparticle preparation using the single microemulsions scheme. Current Nanoscience, 4(4), 370-380.

    Google Scholar 

  42. Niemeyer, C. M. (2001). Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie International Edition, 40(22), 4128-4158.

    Google Scholar 

  43. Almao, P. P. (2012). In situ upgrading of bitumen and heavy oils via nanocatalysis. The Canadian Journal of Chemical Engineering, 90(2), 320-329.

    Google Scholar 

  44. Khoudiakov, M., Gupta, M. C., & Deevi, S. (2005). Au/Fe2O3 nanocatalysts for CO oxidation: a comparative study of deposition–precipitation and coprecipitation techniques. Applied Catalysis A: General, 291(1-2), 151-161.

    Google Scholar 

  45. Nassar, N. N. (2012). Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. Application of adsorbents for water pollution control, 81-118.

    Google Scholar 

  46. Nassar, N. N., & Husein, M. M. (2007). Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions. Langmuir, 23(26), 13093-13103.

    Article  Google Scholar 

  47. Somorjai, G. A., Tao, F., & Park, J. Y. (2008). The nanoscience revolution: merging of colloid science, catalysis and nanoelectronics. Topics in Catalysis, 47(1), 1-14.

    Google Scholar 

  48. Wang, D., Xie, T., & Li, Y. (2009). Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Research, 2(1), 30-46.

    Google Scholar 

  49. Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P., & Schultz, P. G. (1996). Organization of'nanocrystal molecules' using DNA. Nature, 382(6592), 609-611.

    Google Scholar 

  50. Bock, C., Paquet, C., Couillard, M., Botton, G. A., & MacDougall, B. R. (2004). Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. Journal of the American Chemical Society, 126(25), 8028-8037.

    Google Scholar 

  51. Galarraga, C. E. (2011). Upgrading Athabasca bitumen using submicronic NiWMo catalysts at conditions near to in-reservoir operation.

    Google Scholar 

  52. Gobe, M. (1983). Preparation and characterization of monodisperse magnetite sols in W/O microemulsion.

    Google Scholar 

  53. Hellweg, T. (2002). Phase structures of microemulsions. Current opinion in colloid & interface science, 7(1-2), 50-56.

    Google Scholar 

  54. Murray, C., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19), 8706-8715.

    Google Scholar 

  55. Pluym, T. C., Powell, Q. H., Gurav, A. S., Ward, T. L., Kodas, T. T., Wang, L. M., & Glicksman, H. D. (1993). Solid silver particle production by spray pyrolysis. Journal of aerosol science, 24(3), 383-392.

    Google Scholar 

  56. Shen, S. C., Hidajat, K., Yu, L. E., & Kawi, S. (2004). Simple hydrothermal synthesis of nanostructured and nanorod Zn–Al complex oxides as novel nanocatalysts. Advanced Materials, 16(6), 541-545.

    Google Scholar 

  57. Yao, Y. L., Ding, Y., Ye, L. S., & Xia, X. H. (2006). Two-step pyrolysis process to synthesize highly dispersed Pt–Ru/carbon nanotube catalysts for methanol electrooxidation. Carbon, 44(1), 61-66.

    Google Scholar 

  58. Galarraga, C. E., Scott, C., Loria, H., & Pereira-Almao, P. (2012). Kinetic models for upgrading athabasca bitumen using unsupported NiWMo catalysts at low severity conditions. Industrial & engineering chemistry research, 51(1), 140-146.

    Google Scholar 

  59. Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in colloid and interface science, 110(1-2), 49-74.

    Google Scholar 

  60. Pereira, P., Marzin, R., Zacarias, L., Cordova, J., Carrazza, J., & Marino, M. (1999). U.S. Patent No. 5,885,441. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  61. Vasquez, A. (2007, February). Synthesis, characterization and model reactivity of ultra dispersed catalysts for hydroprocessing. In Masters Abstracts International (Vol. 47, No. 03).

    Google Scholar 

  62. Thompson, J., Vasquez, A., Hill, J. M., & Pereira-Almao, P. (2008). The synthesis and evaluation of up-scalable molybdenum based ultra dispersed catalysts: effect of temperature on particle size. Catalysis letters, 123(1), 16-23.

    Google Scholar 

  63. Lapeira, C. C. (2009). Development of a new methodology for preparing nanometric Ni, Mo and NiMo catalytic particles using transient emulsions (Doctoral dissertation, University of Calgary, Department of Chemistry).

    Google Scholar 

  64. Molina, L., & Javier, H. (2009). Transport of catalytic particles immersed in fluid media through cylindrical geometries under heavy oil upgrading conditions (Vol. 70, No. 12).

    Google Scholar 

  65. Alamolhoda, S., Vitale, G., Hassan, A., Nassar, N. N., & Pereira Almao, P. (2019). Development and characterization of novel combinations of Ce‐Ni‐MFI solids for water gas shift reaction. The Canadian Journal of Chemical Engineering, 97(1), 140-151.

    Google Scholar 

  66. Li, Y., Fu, Q., & Flytzani-Stephanopoulos, M. (2000). Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental, 27(3), 179-191.

    Google Scholar 

  67. Hart, A., Shah, A., Leeke, G., Greaves, M., & Wood, J. (2013). Optimization of the CAPRI process for heavy oil upgrading: effect of hydrogen and guard bed. Industrial & Engineering Chemistry Research, 52(44), 15394-15406.

    Google Scholar 

  68. Shah, A. A., Fishwick, R. P., Leeke, G. A., Wood, J., Rigby, S. P., & Greaves, M. (2011). Experimental optimization of catalytic process in situ for heavy-oil and bitumen upgrading. Journal of Canadian Petroleum Technology, 50(11), 33-47.

    Google Scholar 

  69. Ortiz-Moreno, H., Ramírez, J., Sanchez-Minero, F., Cuevas, R., & Ancheyta, J. (2014). Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load. Fuel, 130, 263-272.

    Google Scholar 

  70. Hart, A., Greaves, M., & Wood, J. (2015). A comparative study of fixed-bed and dispersed catalytic upgrading of heavy crude oil using-CAPRI. Chemical Engineering Journal, 282, 213-223.

    Google Scholar 

  71. Noguera, G., Araujo, S., Hernández, J., Rivas, A., Mendoza, D., & Castellano, O. (2012). A comparative activity study of a new ultra-dispersed catalyst system for a hydrocracking/hydrotreating technology using vacuum residue oil: Merey/Mesa. Chemical Engineering Research and Design, 90(11), 1979-1988.

    Google Scholar 

  72. Panariti, N., Del Bianco, A., Del Piero, G., & Marchionna, M. (2000). Petroleum residue upgrading with dispersed catalysts: Part 1. Catalysts activity and selectivity. Applied Catalysis A: General, 204(2), 203-213.

    Google Scholar 

  73. Speight, J. G. (1981). The Desulfurization of Heavy Oils and Residua, Mercel Dekker. Inc., NY, 119-127.

    Google Scholar 

  74. Leprince, P. (2001). Petroleum refining. Vol. 3 conversion processes (Vol. 3). Editions Technip.

    Google Scholar 

  75. Alemán-Vázquez, L. O., Torres-Mancera, P., Ancheyta, J., & Ramírez-Salgado, J. (2016). Use of hydrogen donors for partial upgrading of heavy petroleum. Energy & Fuels, 30(11), 9050-9060.

    Google Scholar 

  76. Albertazzi, S., Rodríguez-Castellón, E., Livi, M., Jiménez-López, A., & Vaccari, A. (2004). Hydrogenation and hydrogenolysis/ring-opening of naphthalene on Pd/Pt supported on zirconium-doped mesoporous silica catalysts. Journal of Catalysis, 228(1), 218-224.

    Google Scholar 

  77. Liu, Y., & Fan, H. (2002). The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation. Energy & fuels, 16(4), 842-846.

    Google Scholar 

  78. Satchell Jr, D. P. (2009). U.S. Patent No. 7,594,990. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  79. E.L. Wilson Jr, W.N. Mitchell, Hydrogen-donor coal liquefaction process, USA Patent US 4210518, 1980

    Google Scholar 

  80. Derbyshire, F. J., Mitchell, T. O., & Whitehurst, D. D. (1981). U.S. Patent No. 4,292,168. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  81. Chen, Q., Gao, Y., Wang, Z. X., & Guo, A. J. (2014). Application of coker gas oil used as industrial hydrogen donors in visbreaking. Petroleum science and technology, 32(20), 2506-2511.

    Google Scholar 

  82. Langer, A. W., Stewart, J., Thompson, C. E., White, H. T., & Hill, R. M. (1962). Hydrogen donor diluent visbreaking of residua. Industrial & Engineering Chemistry Process Design and Development, 1(4), 309-312.

    Google Scholar 

  83. Hart, A., Lewis, C., White, T., Greaves, M., & Wood, J. (2015). Effect of cyclohexane as hydrogen-donor in ultradispersed catalytic upgrading of heavy oil. Fuel Processing Technology, 138, 724-733.

    Google Scholar 

  84. Martínez-Palou, R., de Lourdes Mosqueira, M., Zapata-Rendón, B., Mar-Juárez, E., Bernal-Huicochea, C., de la Cruz Clavel-López, J., & Aburto, J. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 75(3-4), 274-282.

    Google Scholar 

  85. Billon, A., & Bigeard, P. H. (2001). Chapter 10. Hydrocracking. Petroleum refining.

    Google Scholar 

  86. Gates, B. C., Katzer, J. R., & Schuit, G. C. (1979). Chemistry of catalytic processes. Mcgraw-Hill College.

    Google Scholar 

  87. Galarraga, C. E., & Pereira-Almao, P. (2010). Hydrocracking of Athabasca bitumen using submicronic multimetallic catalysts at near in-reservoir conditions. Energy & Fuels, 24(4), 2383-2389.

    Google Scholar 

  88. Hashemi, R., Nassar, N. N., & Almao, P. P. (2014). Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Applied Energy, 133, 374-387.

    Google Scholar 

  89. Pauls, R. W., Abboud, S. A., & Turchenek, L. W. (1996). Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca Oil Sands area.

    Google Scholar 

  90. Anderson, B. S., Chambers, J. I., & McMurray, D. R. (1995, June). Market Outlook For Athabasca Bitumen--The Economics of Location. In SPE International Heavy Oil Symposium. OnePetro.

    Google Scholar 

  91. Elahi, S. M., Scott, C. E., Chen, Z., & Pereira-Almao, P. (2019). In-situ upgrading and enhanced recovery of heavy oil from carbonate reservoirs using nano-catalysts: Upgrading reactions analysis. Fuel, 252, 262-271.

    Google Scholar 

  92. Hassan, A., Carbognani, L., & Pereira-Almao, P. (2008). Development of an alternative setup for the estimation of microcarbon residue for heavy oil and fractions: Effects derived from air presence. Fuel, 87(17-18), 3631-3639.

    Google Scholar 

  93. Hashemi, R., Nassar, N. N., & Pereira Almao, P. (2014). In situ upgrading of Athabasca bitumen using multimetallic ultradispersed nanocatalysts in an oil sands packed-bed column: Part 1. Produced liquid quality enhancement. Energy & fuels, 28(2), 1338-1350.

    Google Scholar 

  94. Hashemi, R., Nassar, N. N., & Pereira Almao, P. (2014). In situ upgrading of athabasca bitumen using multimetallic ultradispersed nanocatalysts in an oil sands packed-bed column: Part 2. Solid analysis and gaseous product distribution. Energy & fuels, 28(2), 1351-1361.

    Google Scholar 

  95. Breysse, M., Djega-Mariadassou, G., Pessayre, S., Geantet, C., Vrinat, M., Pérot, G., & Lemaire, M. (2003). Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today, 84(3-4), 129-138.

    Google Scholar 

  96. Farshid, D., Reynolds, B. Process for upgrading heavy oil using a highly active slurry catalyst composition. USA Patent, US7431823B2, 2008

    Google Scholar 

  97. M.R. de Agudelo, C. Galarraga, Catalyst for the simultaneous hydrodemetallization and hydroconversion of heavy hydrocarbon feedstocks. USA patent US4729980A, 1988

    Google Scholar 

  98. de Agudelo, M. R., & Galarraga, C. (1991). A stable catalyst for heavy oil processing: III. Activity and selectivity. The Chemical Engineering Journal, 46(2), 61-68.

    Google Scholar 

  99. Kennepohl, D., & Sanford, E. (1996). Conversion of Athabasca bitumen with dispersed and supported Mo-based catalysts as a function of dispersed catalyst concentration. Energy & Fuels, 10(1), 229-234.

    Google Scholar 

  100. Sanford, E. C. (1995). Conradson carbon residue conversion during hydrocracking of Athabasca bitumen: Catalyst mechanism and deactivation. Energy & fuels, 9(3), 549-559.

    Google Scholar 

  101. Newson, E. (1975). Catalyst deactivation due to pore-plugging by reaction products. Industrial & Engineering Chemistry Process Design and Development, 14(1), 27-33.

    Google Scholar 

  102. Altgelt, K. H. (1993). Composition and analysis of heavy petroleum fractions. CRC press.

    Google Scholar 

  103. Ancheyta, J., Rana, M. S., & Furimsky, E. (2005). Hydroprocessing of heavy petroleum feeds: Tutorial. Catalysis today, 109(1-4), 3-15.

    Google Scholar 

  104. Pereira-Almao, P. (2007, May). Fine tuning conventional hydrocarbon characterization to highlight catalytic upgrading pathways. In Proceedings of Variability of the Oil Sands Resource Workshop, Lake Louise, AB.

    Google Scholar 

  105. Lee, D. K., Koon, P. S., Yoon, W. L., Lee, I. C., & Woo, S. I. (1995). Residual oil hydrodesulfurization using dispersed catalysts in a carbon-packed trickle bed flow reactor. Energy & fuels, 9(1), 2-9.

    Google Scholar 

  106. Jordaan, S. M. (2011). Governance of Impacts to Land and Water Resources from Oil Sands Development in Alberta. Laboratory on International Law and Regulation, UC San Diego, La Jolla.

    Google Scholar 

  107. Gosselin, P., Hrudey, S. E., Naeth, M. A., Plourde, A., Therrien, R., Van Der Kraak, G., & Xu, Z. (2010). Environmental and health impacts of Canada’s oil sands industry. Royal Society of Canada, Ottawa, ON, 10.

    Google Scholar 

  108. McEachern, P. (2009). Environmental management of Alberta's oil sands.

    Google Scholar 

  109. Zamani, A., & Maini, B. (2009). Flow of dispersed particles through porous media—deep bed filtration. Journal of Petroleum Science and Engineering, 69(1-2), 71-88.

    Google Scholar 

  110. Zamani, A., Maini, B., & Pereira-Almao, P. (2010). Experimental study on transport of ultra-dispersed catalyst particles in porous media. Energy & Fuels, 24(9), 4980-4988.

    Google Scholar 

  111. Hashemi, R., Nassar, N. N., & Pereira-Almao, P. (2012). Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure. Energy & Fuels, 26(3), 1645-1655.

    Google Scholar 

  112. Adamczyk, Z., & Van De Ven, T. G. (1981). Deposition of particles under external forces in laminar flow through parallel-plate and cylindrical channels. Journal of Colloid and Interface Science, 80(2), 340-356.

    Google Scholar 

  113. Brady, J. F. (1994). The long-time self-diffusivity in concentrated colloidal dispersions. Journal of Fluid Mechanics, 272, 109-134.

    Google Scholar 

  114. Sarimeseli, A., & Kelbaliyev, G. (2004). Modeling of the break-up of deformable particles in developed turbulent flow. Chemical engineering science, 59(6), 1233-1240.

    Google Scholar 

  115. Yoshioka, N., Karaoka, C., & Emi, H. (1972). On the deposition of aerosol particles to the horizontal pipe wall from turbulent stream. Kagaku Kogaku, 36(9), 1010-1016.

    Google Scholar 

  116. Hashemi, R., Nassar, N. N., & Pereira Almao, P. (2013). Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: A study of hot fluid flooding for Athabasca bitumen recovery. Energy & Fuels, 27(4), 2194-2201.

    Google Scholar 

  117. Ancheyta, J., Sánchez, S., & Rodríguez, M. A. (2005). Kinetic modeling of hydrocracking of heavy oil fractions: A review. Catalysis Today, 109(1-4), 76-92.

    Google Scholar 

  118. Gray, M. R. (1990). Lumped kinetics of structural groups: hydrotreating of heavy distillate. Industrial & engineering chemistry research, 29(4), 505-512.

    Google Scholar 

  119. Martens, G. G., & Marin, G. B. (2001). Kinetics for hydrocracking based on structural classes: Model development and application. AIChE journal, 47(7), 1607-1622.

    Google Scholar 

  120. Singh, J., Kumar, M. M., Saxena, A. K., & Kumar, S. (2005). Reaction pathways and product yields in mild thermal cracking of vacuum residues: A multi-lump kinetic model. Chemical Engineering Journal, 108(3), 239-248.

    Google Scholar 

  121. Gray, M. R. (2015). Upgrading oilsands bitumen and heavy oil. University of Alberta.

    Google Scholar 

  122. Alhumaizi, K. I., Akhmedov, V. M., Al-Zahrani, S. M., & Al-Khowaiter, S. H. (2001). Low temperature hydrocracking of n-heptane over Ni-supported catalysts: study of global kinetics. Applied Catalysis A: General, 219(1-2), 131-140.

    Google Scholar 

  123. Krishna, R., & Saxena, A. K. (1989). Use of an axial-dispersion model for kinetic description of hydrocracking. Chemical engineering science, 44(3), 703-712.

    Google Scholar 

  124. Sánchez, S., Rodríguez, M. A., & Ancheyta, J. (2005). Kinetic model for moderate hydrocracking of heavy oils. Industrial & engineering chemistry research, 44(25), 9409-9413.

    Google Scholar 

  125. Scherzer, J., & Gruia, A. J. (1996). Hydrocracking science and technology. Crc Press.

    Google Scholar 

  126. Köseoḡlu, R. Ö., & Phillips, C. R. (1987). Kinetics of non-catalytic hydrocracking of Athabasca bitumen. Fuel, 66(6), 741-748.

    Google Scholar 

  127. Köseoḡlu, R. Ö., & Phillips, C. R. (1988). Kinetic models for the non-catalytic hydrocracking of Athabasca bitumen. Fuel, 67(7), 906-915.

    Google Scholar 

  128. Loria, H., Trujillo-Ferrer, G., Sosa-Stull, C., & Pereira-Almao, P. (2011). Kinetic modeling of bitumen hydroprocessing at in-reservoir conditions employing ultradispersed catalysts. Energy & Fuels, 25(4), 1364-1372.

    Google Scholar 

  129. Da Silva De Andrade, F. J. (2014). Kinetic modeling of catalytic in situ upgrading for Athabasca bitumen, deasphalting pitch and vacuum residue (Master's thesis, Graduate Studies).

    Google Scholar 

  130. Nassar, N. N., Hassan, A., Luna, G., & Pereira-Almao, P. (2013). Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catalysis today, 207, 127-132.

    Google Scholar 

  131. Nassar, N. N., Hassan, A., Luna, G., & Pereira-Almao, P. (2013). Comparative study on thermal cracking of Athabasca bitumen. Journal of thermal analysis and calorimetry, 114(2), 465-472.

    Google Scholar 

  132. Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2011). Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy & Fuels, 25(4), 1566-1570.

    Google Scholar 

  133. Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2012). Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. Journal of thermal analysis and calorimetry, 110(3), 1327-1332.

    Google Scholar 

  134. Nassar, N. N., Hassan, A., & Vitale, G. (2014). Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Applied Catalysis A: General, 484, 161-171.

    Google Scholar 

  135. Nares, H. R., Schachat, P., Ramirez-Garnica, M. A., Cabrera, M., & Noe-Valencia, L. (2007, April). Heavy-crude-oil upgrading with transition metals. In Latin American & caribbean petroleum engineering conference. OnePetro.

    Google Scholar 

  136. Peluso, E. (2011). Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity (Vol. 73, No. 05).

    Google Scholar 

  137. Bergeson, L. L., & Auerbach, B. E. T. H. A. M. I. (2004). Reading the small print. In Environmental Forum (Vol. 21, No. 2, pp. 30-32). THE ENVIRONMENTAL LAW INSTITUTE.

    Google Scholar 

  138. Morris, J., & Willis, J. (2007). US Environmental Protection Agency nanotechnology white paper. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  139. Kahan, D. M., & Rejeski, D. (2009). PRoject on emeRging nanotechnologies.

    Google Scholar 

  140. Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. science, 311(5761), 622-627.

    Google Scholar 

  141. Thomas, T., Thomas, K., Sadrieh, N., Savage, N., Adair, P., & Bronaugh, R. (2006). Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicological Sciences, 91(1), 14-19.

    Google Scholar 

  142. Breggin, L. K., & Carothers, L. (2006). Governing uncertainty: the nanotechnology environmental, health, and safety challenge. Colum. J. Envtl. L., 31, 285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashaat N. Nassar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashoorian, S., Montoya, T., Nassar, N.N. (2021). Nanoparticles for Heavy Oil Upgrading. In: Nassar, N.N., Cortés, F.B., Franco, C.A. (eds) Nanoparticles: An Emerging Technology for Oil Production and Processing Applications. Lecture Notes in Nanoscale Science and Technology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-12051-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12051-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12050-8

  • Online ISBN: 978-3-319-12051-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics