Nonstandard Analysis, Infinitesimals, and the History of Calculus

  • Craig FraserEmail author
Part of the Trends in the History of Science book series (TRENDSHISTORYSCIENCE)


Carl Boyer’s The Concepts of the Calculus; a Critical and Historical Discussion of the Derivative and the Integral was published in 1939 and reprinted in several later editions.


ReNe AMbi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Alexander 1994] Alexander, Daniel S. A History of Complex Dynamics From Schröder to Fatou and Julia. Braunschweig/Wiesbaden: Vieweg & Sohn, 1994.Google Scholar
  2. [Bair et al. 2013] Bair, Jacques, et al., “Is Mathematical History Written by the Victors?”, Notices of the American Mathematical Society 60 (2013), 886-904.Google Scholar
  3. [Barbeau and Leah 1976] Barbeau, Edward J. and P. J. Leah, “Euler’s 1760 Paper on Divergent Series,” Historia Mathematica 3 (1976), 141-160.Google Scholar
  4. [Bell 2008] Bell, John L. A Primer of Infinitesimal Analysis, 2nd Edition. Cambridge, UK: Cambridge University Press, 2008.Google Scholar
  5. [Berkeley 1734] Berkeley, George. The Analyst, or, a discourse addressed to an infidel mathematician: wherein it is examined whether the object, principles, and inferences of the modern analysis are more distinctly conceived, or more evidently deduced, than religious mysteries and points of faith, London, 1734.Google Scholar
  6. [Bernoulli 1703] Bernoulli, Johann. “Problema exhibitum”, Acta Eruditorum (1703), 26-31.Google Scholar
  7. [Bernoulli 1712] Bernoulli, Johann. “Angulorum arcuumque sectio indefinita per formulam universalem expressa sine serierum auxilio…,” Acta Eruditorum (1712), 274-277.Google Scholar
  8. [Bos 1974] Bos, Henk J. “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus,” Archive for History of Exact Sciences (1974), 1-90.Google Scholar
  9. [Bottazzini 1990] Bottazzini, Umberto. “‘Geometric Rigour and Modern Analysis’. An Introduction to Cauchy’s Cours d’Analyse,” in Augustin-Louis Cauchy’s Cours d’Analyse de l’École Royale Polytechnique Première Partie Analyse Algébrique, Umberto Bottazzini, ed., Bologna: Cooperativa Libraria Universitaria Editrice, 1990, pp. xi-cxxxix. Volume 6 of the seriesInstrumenta Rationis Sources for the History of Logic in the Modern Age, Dino Buzzetti et al., eds.Google Scholar
  10. [Bottazzini 2003] Bottazzini, Umberto. “Complex Function Theory,” in A History of Analysis, H. N. Jahnke, ed., American and London Mathematical Societies, 2003, pp. 213-260.Google Scholar
  11. [Bottazzini and Gray 2013] Hidden Harmony—Geometric Fantasies The Rise of Complex Function Theory, Sources and Studies in the History of Mathematics and Physical Sciences, New York: Springer, 2013.Google Scholar
  12. [Boyer 1939] Boyer, Carl. The Concepts of the Calculus; a Critical and Historical Discussion of the Derivative and the Integral, New York: Columbia University Press, 1939. Republished as The History of the Calculus and its Conceptual Development, New York: Dover, 1959.Google Scholar
  13. [Cohen 1985] Cohen, I. Bernard. Revolution in Science, Cambridge, MA: Belknap Press of Harvard University Press, 1985.Google Scholar
  14. [Comte 1830] Comte, Auguste. Cours de Philosophie Positive Tome Premier Contenant les Préliminaires Genéraux et la Philosophie Mathématiques, Paris: Bachlier, 1830.Google Scholar
  15. [Condorcet 1847] Condorcet, Nicolas de. “Discours sur les sciences mathématiques,” in Condorcet, Oeuvres, vol. 1, A. Condorcet O’Connor and M. F. Arago, eds., Paris, 1847, pp. 453 - 81.Google Scholar
  16. [Conway 1976] Conway, John H. On Numbers and Games, London, New York: Academic Press, 1976.Google Scholar
  17. [d’Alembert 1754] d’Alembert, Jean. “Différentiel,” in Encyclopédie, ou Dictionnaire Raisonné des Sciences, des Arts et des Métiers, vol. 4, Paris, 1754, pp. 985-989.Google Scholar
  18. [d’Alembert 1765] d’Alembert, Jean. “Limite,” in Encyclopédie, ou Dictionnaire Raisonné des Sciences, des Arts et des Métiers, vol. 9, Paris, 1765, p. 542.Google Scholar
  19. [Dauben 1988] Dauben, Joseph W. “Abraham Robinson and Nonstandard Analysis: History, Philosophy and Foundations of Mathematics,” in History and Philosophy of Modern Mathematics, William Aspray and Philip Kitcher, eds., Minnesota Studies in the Philosophy of Science, vol. 11, Minneapolis: University of Minnesota Press, 1988, pp. 177-200.Google Scholar
  20. [Dauben 1995] Dauben, Joseph W. Abraham Robinson The Creation of Nonstandard Analysis A Personal and Mathematical Odyssey, Princeton: Princeton University Press, 1995.Google Scholar
  21. [Demidov 1982] Demidov, Sergei. “Création et développement de la théorie des équations différentielles aux dérivées partielles dans les travaux de J. d’Alembert,” Revue d’Histoire des Sciences 35/1 (1982), 3-42.Google Scholar
  22. [Ehrlich 2006] Ehrlich, Philip. “The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: the Emergence of non-Archimedean Systems of Magnitudes,” Archive for History of Exact Sciences 60 (2006), 1-121.Google Scholar
  23. [Enderton 1972] Enderton, Herbert B. A Mathematical Introduction to Logic, New York and London: Academic Press, 1972.Google Scholar
  24. [Engelsman 1984] Engelsman, Steven B. Families of Curves and the Origins of Partial Differentiation, Amsterdam: North-Holland, 1984.Google Scholar
  25. [Euler 1736] Euler, Leonhard. Mechanica sive motus scientia analytice exposita, St. Petersburg: St. Petersburg Academy of Sciences, 1736. English translation by Ian Bruce, Euler Archive (
  26. [Euler 1748] Euler, Leonhard. Introductio in Analysin Infinitorum, Tomus Primus, Lausanne: M.-M. Bouquet & Soc., 1748; reprinted in Leonhard Euler Opera Omnia, Series 1, vol. 8, Leipzig and Berlin: B. G. Teubner, 1922.Google Scholar
  27. [Euler 1755] Euler, Leonhard. Institutiones calculi differentialis cum eius in analysi finitorum ac doctrina serierum, Impensis Acad. imp. sci. petropolitanæ, ex off. Michælis, Berlin, 1755; reprinted in Leonhard Euler Opera Omnia, Series 1, vol. 10, Leipzig and Berlin: B. G. Teubner, 1913.Google Scholar
  28. [Euler 1760] Euler, Leonhard. “De seriebus divergentibus,” Novi Commentarii academiae scientiarum Petropolitanæ 5 (1760), 205-237; reprinted in Leonhard Euler Opera Omnia, Series 1, vol. 14, Leipzig and Berlin: B. G. Teubner, 1925, pp. 585 - 617; partial English translation and commentary in [Barbeau and Leah, 1976].Google Scholar
  29. [Euler 1983] Euler, Leonhard. “Zur Theorie komplexer Funktionen,” Arbeiten von Leonhard Euler, A. P. Juschkewitsch, ed., German trans. W. Purkert, et al., Darmstadt: Wissenschaftliche Buchgesellschaft, 1983.Google Scholar
  30. [Ferraro 2000] Ferraro, Giovanni. “The Value of an Infinite Sum Some Observations on the Eulerian Theory of Series,” Sciences et Techniques en Perspective 4 (2000), 73-113.Google Scholar
  31. [Ferraro 2007] Ferraro, Giovanni. The Rise and Development of the Theory of Series up to the Early 1820s, Berlin and New York: Springer, 2007.Google Scholar
  32. [Fisher 1978] Fisher, Gordon. “Cauchy and the Infinitely Small,” Historia Mathematica 5 (1978): 313-331.Google Scholar
  33. [Fisher 1981] Fisher, Gordon. “The Infinite and Infinitesimal Quantities of du Bois-Reymond and their Reception,” Archive for History of Exact Sciences 24 (1981), 101-163.Google Scholar
  34. [Fontenelle 1790-1792] Fontenelle, Bernard Le Bovier de. Oeuvres, vols. 6 and 7, new edition, Paris: Jean-François Baslieu et Jean Servière, 1790-1792.Google Scholar
  35. [Fraser 1983] Fraser, Craig. “J. L. Lagrange’s Early Contributions to the Principles and Methods of Mechanics,” Archive for History of Exact Sciences 28, (1983), 197-241.Google Scholar
  36. [Fraser 1989] Fraser, Craig.“The Calculus as Algebraic Analysis: Some Observations on Mathematical Analysis in the 18th Century,” Archive for History of Exact Sciences 39 (1989), 317-335.Google Scholar
  37. [Fraser 1990] Fraser, Craig.“Lagrange’s Analytic Mathematics, Its Cartesian Origins and Reception in Comte’s Positive Philosophy,” Studies in the History and Philosophy of Science 21 (1990): 243-256.Google Scholar
  38. [Fraser 2003] Fraser, Craig. “History of Mathematics in the Eighteenth Century”, in The Cambridge History of Science: Volume 4, Eighteenth-Century Science, Roy Porter, ed., Cambridge University Press, 2003, pp. 305-327.Google Scholar
  39. [Fraser 2005] Fraser, Craig. “Joseph Louis Lagrange, Théorie des fonctions analytiques,” in Landmark Writings in Western Mathematics 1640-1940, Ivor Grattan-Guinness, ed., Amsterdam: Elsevier, 2005, pp. 208-224.Google Scholar
  40. [Grabiner 1981] Grabiner, Judith V. The Origins of Cauchy’s Rigorous Calculus, Cambridge, MA: MIT Press, 1981.Google Scholar
  41. [Goldenbaum and Jesseph 2008] Goldenbaum, Ursula and Douglas Jesseph, eds., Infinitesimal Differences Controversies Between Leibniz and his Contemporaries. Berlin and New York: Walter de Gruyter, 2008.Google Scholar
  42. [Grattan-Guinness 2004] Grattan-Guinness. “The Mathematics of the Past: Distinguishing its History from our Heritage,” Historia Mathematica 31 (2004), 163-185.Google Scholar
  43. [Grimsley 1963] Grimsley, Ronald G. Jean d’Alembert (1717-1783), Oxford: Clarendon Press, 1963.Google Scholar
  44. [Guicciardini 2009] Guicciardini, Niccolò. Isaac Newton on Mathematical Certainty and Method, Cambridge, MA and London: MIT Press, 2009.Google Scholar
  45. [Hardy 1949] Hardy, Godfrey H. Divergent Series, Oxford: Oxford Clarenden Press, 1949.Google Scholar
  46. [Hawkins 1977] Hawkins, Thomas. “Weierstrass and the Theory of Matrices,” Archive for History of Exact Sciences 17 (1977), 119-163.Google Scholar
  47. [Heilbron 1990] Heilbron, John L. “Introductory Essay,” in The Quantifying Spirit in the Eighteenth Century, Tore Frangsmyr, J. L. Heilbron, and Robin E. Rider, eds., Berkeley: University of California Press, 1990, pp. 1-23.Google Scholar
  48. [Jahnke 2003] Jahnke, Hans Niels. “Algebraic Analysis in the Eighteenth Century,” in A History of Analysis, H. N. Jahnke, ed., American and London Mathematical Societies, 2003, pp. 105-136.Google Scholar
  49. [Keisler 1976] Keisler, H. Jerome. Elementary Calculus, Boston, MA: Prindel, Weber & Schmidt, 1976.Google Scholar
  50. [Keisler 1976] Keisler, H. Jerome. Foundations of Infinitesimal Calculus, Boston, MA: Prindel, Weber & Schmidt, 1976.Google Scholar
  51. [Kline 1972] Kline, Morris. Mathematical Thought from Ancient to Modern Times, New York: Oxford University Press, 1972.Google Scholar
  52. [Knopp 1928] Knopp, Konrad. Theory and Application of Infinite Series, trans. from 2nd German edition by R. C. Young, London: Blackie, 1928.Google Scholar
  53. [Koestier 1991] Koetsier, Teun. Lakatos’ Philosophy of Mathematics, A Historical Approach, Amsterdam: North-Holland, 1991.Google Scholar
  54. [Lagrange 1797] Lagrange, Joseph Louis. Théorie des fonctions analytiques, contenant les principes du calcul différentiel, dégagé de toute consideration d’infiniment petits ou d’évanouissans, de limites ou de fluxions, et réduits à l’analyse algébrique des quantités finies, Paris: L’Imprimerie de la République. Prairial an V, 1797.Google Scholar
  55. [Lagrange 1806] Lagrange, Joseph Louis. Leçons sur le calcul des fonctions, Paris: Courcier, 1806.Google Scholar
  56. [Lakatos 1978] Lakatos, Imre. “Cauchy and the Continuum: The Significance of Non-standard Analysis for the History and Philosophy of Mathematics,” in Imre Lakatos, Mathematics, Science and Epistemology Philosophical Papers, vol. 2, John Worral and Gregory Currie, eds., Cambridge: Cambridge University Press, 1978, pp. 43-60.Google Scholar
  57. [Laplace 1835] Laplace, Pierre Simon. Exposition du système du monde, 6th ed., Paris, 1835; reprinted in Oeuvres complètes de Laplace, Tome 6, Paris, 1884.Google Scholar
  58. [Laugwitz 1987] Laugwitz, Detlef. “Infinitely Small Quantities in Cauchy’s Textbooks,” Historia Mathematica 14 (1987): 258 - 274.Google Scholar
  59. [Laugwitz 1989] Laugwitz, Detlef. “Definite Values of Infinite Sums: Aspects of the Foundations of Infinitesimal Analysis around 1820,” Archive for History of Exact Sciences 39 (1989), 195-245.Google Scholar
  60. [Leibniz 1703] Leibniz, Gottfried Wilhelm,.“Continuatio analyseos quadraturarum rationalium,” Acta Eruditorum (1703), 19-26.Google Scholar
  61. [l’Hôpital 1696] l’Hôpital, Marquis de. Analyse des infiniments petits pour l’intelligence des lignes courbes, Paris, 1696.Google Scholar
  62. [Mach 1893] Mach, Ernst. The Science of Mechanics: A Critical and Historical Account of Its Development, Chicago: Open Court, 1893. English trans. of 2nd German ed. by Thomas J. McCormack.Google Scholar
  63. [Mahoney 1985] Mahoney, Michael S. “Diagrams and Dynamics: Mathematical Perspectives on Edgerton’s Thesis,” in Science and Arts in the Renaissance, John W. Shirley and F. David Hoeniger, eds., London: Associated University Presses, 1985, pp. 198-220.Google Scholar
  64. [Panza 1996] Panza, Marco. “Concept of Function, between Quantity and Form, in the 18th Century,” in History of Mathematics and Education: Ideas and Experiences, H. Niels Jahnke et al., eds., Göttingen: Vandenhoeck & Ruprecht. 1996.Google Scholar
  65. [Reyes 2004] Reyes, Mitchell G. “The Rhetoric in Mathematics Newton, Leibniz, the Calculus, and the Rhetorical Force of the Infinitesimal,” Quarterly Journal of Speech 90 (2004): 163-188.Google Scholar
  66. [Rider 1990] Rider, Robin E. “Measure of Ideas, Rule of Language: Mathematics and Language in the 18th Century,” in The Quantifying Spirit in the Eighteenth Century, Tore Frangsmyr, J. L. Heilbron, and Robin E. Rider, eds., Berkeley: University of California Press, 1990, pp. 113-140.Google Scholar
  67. [Robinson 1961] Robinson, Abraham. “Non-Standard Analysis,” Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series A 64 (1961), 432-440.Google Scholar
  68. [Robinson 1966] Robinson, Abraham. Non-Standard Analysis, Studies in the Logic and Foundations of Mathematics, Amsterdam: North Holland, 1966.Google Scholar
  69. [Robinson 1967] Robinson, Abraham. “The Metaphysics of the Calculus,” in Problems in the Philosophy of Mathematics, Imre Lakatos, ed., Amsterdam: North-Holland, 1967, pp. 28-46.Google Scholar
  70. [Schmieden and Laugwitz 1958] Schmieden, Curt and Detlef Laugwitz. “Eine Erweiterung der Infinitesimalrechnung,” Mathematische Zeitschrift 69 (1958), 1- 39.Google Scholar
  71. [Schneider 1968] Schneider, Ivo. “Der Mathematiker Abraham de Moivre (1887-1754),” Archive for History of Exact Sciences 5 (1968), 177-317.Google Scholar
  72. [Smithies 1997] Smithies, Frank. Cauchy and the Creation of Complex Function Theory, Cambridge, UK: Cambridge University Press, 1997.Google Scholar
  73. [Taton 1974] Taton, René. “Inventaire chronologique de l’oeuvre de Lagrange,” Revue d’Histoire des Sciences 26 (1974), 3-36.Google Scholar
  74. [Youschkevitch 1971] Youschkevitch, Adolf P. “Lazare Carnot and the Competition of the Berlin Academy in 1786 on the Mathematical Theory of the Infinite,” in Lazare Carnot Savant, Charles C. Gillispie, ed., Princeton, N.J.: Princeton University Press, 1971, pp. 149-168.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for the History and Philosophy of Science and Technology, Victoria CollegeUniversity of TorontoTorontoCanada

Personalised recommendations