A Fuzzy System for Concept-Level Sentiment Analysis

  • Mauro Dragoni
  • Andrea G. B. Tettamanzi
  • Célia da Costa Pereira
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 475)

Abstract

An emerging field within Sentiment Analysis concerns the investigation about how sentiment concepts have to be adapted with respect to the different domains in which they are used. In the context of the Concept-Level Sentiment Analysis Challenge, we presented a system whose aims are twofold: (i) the implementation of a learning approach able to model fuzzy functions used for building the relationships graph representing the appropriateness between sentiment concepts and different domains (Task 1); and (ii) the development of a semantic resource based on the connection between an extended version of WordNet, SenticNet, and ConceptNet, that has been used both for extracting concepts (Task 2) and for classifying sentences within specific domains (Task 3).

References

  1. 1.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, Association for Computational Linguistics, pp. 79–86 (July 2002)Google Scholar
  2. 2.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Carroll, J.A., van den Bosch, A., Zaenen, A. (eds.) ACL, The Association for Computational Linguistics (2007)Google Scholar
  3. 3.
    Bollegala, D., Weir, D.J., Carroll, J.A.: Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans. Knowl. Data Eng. 25(8), 1719–1731 (2013)CrossRefGoogle Scholar
  4. 4.
    Xia, R., Zong, C., Hu, X., Cambria, E.: Feature ensemble plus sample selection: domain adaptation for sentiment classification. IEEE Int. Syst. 28(3), 10–18 (2013)CrossRefGoogle Scholar
  5. 5.
    Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: Angelova, G., Bontcheva, K., Mitkov, R. (eds.) RANLP, RANLP 2011 Organising Committee/ACL, pp. 571–578 (2013)Google Scholar
  6. 6.
    Tsai, A.C.R., Wu, C.E., Tsai, R.T.H., Hsu, J.Y.: Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Int. Syst. 28(2), 22–30 (2013)CrossRefGoogle Scholar
  7. 7.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)MATHGoogle Scholar
  8. 8.
    Kipfer, B.A.: Roget’s 21st Century Thesaurus, vol. 3. Random House, New York (2005)Google Scholar
  9. 9.
    Cambria, E., Speer, R., Havasi, C., Hussain, A.: Senticnet: a publicly available semantic resource for opinion mining. In: AAAI Fall Symposium: Commonsense Knowledge. Volume FS-10-02 of AAAI Technical report, AAAI (2010)Google Scholar
  10. 10.
    Liu, H., Singh, P.: ConceptNet: a practical commonsense reasoning tool-kit. BT Technol. J. 22(4), 211–226 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST 2(3), 27 (2011)Google Scholar
  13. 13.
    McCallum, A.K.: Mallet: a machine learning for language toolkit (2002). http://mallet.cs.umass.edu

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mauro Dragoni
    • 1
  • Andrea G. B. Tettamanzi
    • 2
  • Célia da Costa Pereira
    • 2
  1. 1.FBK–IRSTTrentoItaly
  2. 2.Université Nice Sophia Antipolis, I3S, UMR 7271Sophia AntipolisFrance

Personalised recommendations