A Hybrid Multi-strategy Recommender System Using Linked Open Data

  • Petar RistoskiEmail author
  • Eneldo Loza Mencía
  • Heiko Paulheim
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 475)


In this paper, we discuss the development of a hybrid multi-strategy book recommendation system using Linked Open Data. Our approach builds on training individual base recommenders and using global popularity scores as generic recommenders. The results of the individual recommenders are combined using stacking regression and rank aggregation. We show that this approach delivers very good results in different recommendation settings and also allows for incorporating diversity of recommendations.


Linked Open Data Hybrid recommender systems Stacking 



The work presented in this paper has been partly funded by the German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD).


  1. 1.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the web of data in model-based recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 253–256, ACM. New York (2012)Google Scholar
  2. 2.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS ’12, pp. 1–8. ACM, New York (2012)Google Scholar
  3. 3.
    Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recommender systems. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence (2010)Google Scholar
  4. 4.
    Kong, X., Yu, P.S.: An ensemble-based approach to fast classification of multi-label data streams. In: CollaborateCom, pp. 95–104 (2011)Google Scholar
  5. 5.
    Mihelčić, M., Antulov-Fantulin, N., Bošnjak, M., Šmuc, T.: Extending rapidminer with recommender systems algorithms. In: RapidMiner Community Meeting and Conference (RCOMM 2012) (2012)Google Scholar
  6. 6.
    Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: Top-n recommendations from implicit feedback leveraging linked open data. In: IIR, pp. 20–27 (2014)Google Scholar
  7. 7.
    Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Paulheim, H., Ristoski, P., Mitichkin, E., Christian, B.: Data mining with background knowledge from the web. In: RapidMiner World (2014)Google Scholar
  9. 9.
    Schmachtenberg, M., Strufe, T., Paulheim, H.: Enhancing a location-based recommendation system by enrichment with structured data from the web. In: Web Intelligence, Mining and Semantics (2014)Google Scholar
  10. 10.
    Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Intell. Res. 10(1), 271–289 (1999)zbMATHGoogle Scholar
  11. 11.
    Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label classification without the multi-label cost. In: Proceedings of the 2010 SDM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Petar Ristoski
    • 1
    Email author
  • Eneldo Loza Mencía
    • 2
  • Heiko Paulheim
    • 1
  1. 1.Research Group Data and Web ScienceUniversity of MannheimMannheimGermany
  2. 2.Knowledge Engineering GroupTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations