Skip to main content

Linked Open Data-Enabled Recommender Systems: ESWC 2014 Challenge on Book Recommendation

Part of the Communications in Computer and Information Science book series (CCIS,volume 475)

Abstract

In this chapter we present a report of the ESWC 2014 Challenge on Linked Open Data-enabled Recommender Systems, which consisted of three tasks in the context of book recommendation: rating prediction in cold-start situations, top N recommendations from binary user feedback, and diversity in content-based recommendations. Participants were requested to address the tasks by means of recommendation approaches that made use of Linked Open Data and semantic technologies. In the chapter we describe the challenge motivation, goals and tasks, summarize and compare the nine final participant recommendation approaches, and discuss their experimental results and lessons learned. Finally, we end with some conclusions and potential lines of future research.

Keywords

  • Recommender System
  • Recommendation Method
  • Link Open Data
  • Recommendation List
  • Recommendation Approach

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-12024-9_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-12024-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Notes

  1. 1.

    Linking Open Data, http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData.

  2. 2.

    Linked Data, http://linkeddata.org.

  3. 3.

    ESWC 2014 Challenge on Linked Open Data-enabled Recommender Systems, http://challenges.2014.eswc-conferences.org/index.php/RecSys.

  4. 4.

    LibraryThing dataset, http://www.macle.nl/tud/LT.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a Web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  2. Ampazis, N., Emmanouilidis, T.: Exploring semantic features for producing top-N recommendation lists from binary user feedback. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 157–162. Springer, Heidelberg (2014)

    Google Scholar 

  3. Basile, P., Musto, C., De Gemmis, M., Lops, P., Narducci, F., Semeraro, G.: Aggregation strategies for linked open data-enabled recommender systems. In: Presutti, V., et al. (eds.) European Semantic Web Conference (Satellite Events) (2014), CCIS, vol. 475, Springer, Heidelberg (2014)

    Google Scholar 

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

    CrossRef  Google Scholar 

  5. Burke, R.D.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    CrossRef  MATH  Google Scholar 

  6. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 1–8 (2012)

    Google Scholar 

  7. Heitmann, B., Hayes, C.: SemStim at the LOD-RecSys 2014 Challenge. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 170–175. Springer, Heidelberg (2014)

    Google Scholar 

  8. Kunaver, M., Pozrl, T., Dobravec, S., Kosir, A., Droftina, U.: Increasing top 20 diversity through recommendation post-processing. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 188–192. Springer, Heidelberg (2014)

    Google Scholar 

  9. Maccatrozzo, V., Ceolin, D., Aroyo, L., Groth, P.: A semantic pattern-based recommender. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 182–187. Springer, Heidelberg (2014)

    Google Scholar 

  10. Moreno, A., Ariza-Porras, C., Lago, P., Jiménez-Guarín, C.L., Castro, H., Riveill, M.: Hybrid model rating prediction with linked open data for recommender systems. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 193–198. Springer, Heidelberg (2014)

    Google Scholar 

  11. Peska, L., Vojtas, P.: Hybrid recommending exploiting multiple DBpedia language editions. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 144–149. Springer, Heidelberg (2014)

    Google Scholar 

  12. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Heidelberg (2011)

    CrossRef  MATH  Google Scholar 

  13. Ristoski, P., Mencía, E.L., Paulheim, H.: A hybrid multi-strategy recommender system using linked open data. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 150–156. Springer, Heidelberg (2014)

    Google Scholar 

  14. Schuhmacher, M., Meilicke, C.: Popular books and linked data: some results for the ESWC’14 RecSys challenge. In: Presutti, V., et al. (eds.) SemWebEval 2014, CCIS, vol. 475, pp. 176–181. Springer, Heidelberg (2014)

    Google Scholar 

  15. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32 (2005)

    Google Scholar 

Download references

Acknowledgements

We thank all participants for their interest in the challenge, their submissions, and presentations and discussion during the conference. We also thank the program committee members for their valuable reviews of submissions, and Valentina Presutti and Milan Stankovic for their help with the organization of the challenge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Di Noia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Noia, T., Cantador, I., Ostuni, V.C. (2014). Linked Open Data-Enabled Recommender Systems: ESWC 2014 Challenge on Book Recommendation. In: , et al. Semantic Web Evaluation Challenge. SemWebEval 2014. Communications in Computer and Information Science, vol 475. Springer, Cham. https://doi.org/10.1007/978-3-319-12024-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12024-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12023-2

  • Online ISBN: 978-3-319-12024-9

  • eBook Packages: Computer ScienceComputer Science (R0)