Skip to main content

Transcriptome Profiling in Experimental Inflammatory Arthritis

  • Chapter
  • First Online:
Transcriptomics in Health and Disease

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects 0.5 to 1 % of the human population. Gene expression profiling studies of tissues from RA patients showed marked variation in gene expression profiles that allowed identifying distinct molecular disease mechanisms involved in RA pathology. The relative contribution of the different mechanisms may vary among patients and in different stages of disease. Thus, the broad goals of expression profiling in RA are the improvement of understanding of the pathogenic mechanisms underlying RA, the identification of disease subsets and new drug targets and the assessment of disease activity, such as: responsiveness to therapy, overall disease severity and organ specific risk and development of new diagnostic tests. Genetic and environmental factors contribute to the development of this disease and numerous studies have indicated the participation of the major histocompatibility complex (MHC) class II alleles and non-MHC genes. Therefore, identification of the major roles of the participating cells and of candidate genes has been an important subject of study to the understanding of RA pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adarichev VA, Valdez JC, Bardos T et al (2003) Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J Immunol 170(5):2283–2292

    Article  CAS  PubMed  Google Scholar 

  • Araujo LM, Ribeiro OG, Siqueira M et al (1998) Innate resistance to infection by intracellular bacterial pathogens differs in mice selected for maximal or minimal acute inflammatory response. Eur J Immunol 28(9):2913–2920

    Article  CAS  PubMed  Google Scholar 

  • Asquith DL, Miller AM, Mcinnes IB et al (2009) Animal models of rheumatoid arthritis. Eur J Immunol 39(8):2040–2044

    Article  CAS  PubMed  Google Scholar 

  • Ates O, Dalyan L, Musellim B et al (2009) NRAMP1 (SLC11A1) gene polymorphisms that correlate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid arthritis. Int J Immunogenet 36(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Baechler EC, Batliwalla FM, Reed AM et al (2006) Gene expression profiling in human autoimmunity. Immunol Rev 210:120–137

    Article  CAS  PubMed  Google Scholar 

  • Besenyei T, Kadar A, Tryniszewska B et al (2012) Non-MHC risk alleles in rheumatoid arthritis and in the syntenic chromosome regions of corresponding animal models. Clin Dev Immunol. doi:10.1155/2012/284751

    Google Scholar 

  • Biozzi G, Ribeiro OG, Saran A et al (1998) Effect of genetic modification of acute inflammatory responsiveness on tumorigenesis in the mouse. Carcinogenesis 19(2):337–346

    Article  CAS  PubMed  Google Scholar 

  • Cho YG, Cho ML, Min SY et al (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 7(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • De Franco M, Colombo F, Galvan A et al (2010) Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis. Cancer Lett 294(2):187–194

    Article  CAS  Google Scholar 

  • De Franco M, Peters LC, Correa MA et al (2014) Pristane-induced arthritis loci interact with the Slc11a1 gene to determine susceptibility in mice selected for high inflammation. PLoS One 9(2):e88302

    Article  PubMed Central  PubMed  Google Scholar 

  • Donate PB, Fornari TA, Macedo C et al (2013) T cell post-transcriptional miRNA-mRNA interaction networks identify targets associated with susceptibility/resistance to collagen-induced arthritis. PLoS One 8(1):e54803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filer A, Raza K, Salmon M et al (2008) The role of chemokines in leucocyte-stromal interactions in rheumatoid arthritis. Front Biosci 13:2674–2685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujikado N, Saijo S, Iwakura Y (2006) Identification of arthritis-related gene clusters by microarray analysis of two independent mouse models for rheumatoid arthritis. Arthritis Res Ther 8(4):100–125

    Article  Google Scholar 

  • Galvan A, Vorraro F, Cabrera W et al (2011) Association study by genetic clustering detects multiple inflammatory response loci in non-inbred mice. Genes Immun 12(5):390–394

    Article  CAS  PubMed  Google Scholar 

  • Glant TT, Finnegan A, Mikecz K (2003) Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol 23(3):199–250

    Article  CAS  PubMed  Google Scholar 

  • Glant TT, Adarichev VA, Nesterovitch AB et al (2004) Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci 327(4):188–195

    Article  CAS  PubMed  Google Scholar 

  • Hirose J, Tanaka S (2011) Animal models for bone and joint disease. CIA, CAIA model. Clin Calcium 21(2):253–259

    PubMed  Google Scholar 

  • Ibanez OM, Stiffel C, Ribeiro OG et al (1992) Genetics of nonspecific immunity: I. Bidirectional selective breeding of lines of mice endowed with maximal or minimal inflammatory responsiveness. Eur J Immunol 22(10):2555–2563

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SM, Yu X (2006) Dissecting the genetic basis of rheumatoid arthritis in mouse models. Curr Pharm Des 12(29):3753–3759

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SM, Mix E, Bottcher T et al. (2001) Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain 124:1927–1938

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SM, Koczan D, Thiesen HJ (2002) Gene-expression profile of collagen-induced arthritis. J Autoimmun 18(2):159–167

    Article  PubMed  Google Scholar 

  • Jarvis JN, Frank MB (2010) Functional genomics and rheumatoid arthritis: where have we been and where should we go? Genome Med 2(7):44–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Jensen JR, Peters LC, Borrego A et al (2006) Involvement of antibody production quantitative trait loci in the susceptibility to pristane-induced arthritis in the mouse. Genes Immun 7(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Ortmann RA, Kimpel D (2005) Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 12(3):167–181

    Article  PubMed  Google Scholar 

  • Kobezda T, Ghassemi-Nejad S, Mikecz K et al (2014) Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol 10(3):160–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurko J, Besenyei T, Laki J et al (2013) Genetics of rheumatoid arthritis—a comprehensive review. Clin Rev Allergy Immunol 45(2):170–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li P, Schwarz EM (2003) The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol 25(1):19–33

    Article  PubMed  Google Scholar 

  • Li J, Hsu HC, Mountz JD (2012) Managing macrophages in rheumatoid arthritis by reform or removal. Curr Rheumatol Rep 14(5):445–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubberts E, Koenders MI, Van Den Berg WB (2005) The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 7(1):29–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Miller JC, Crandall H et al (2009) Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12. Infect Immun 77(8):3302–3311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patten C, Bush K, Rioja I et al (2004) Characterization of pristane-induced arthritis, a murine model of chronic disease: response to antirheumatic agents, expression of joint cytokines, and immunopathology. Arthritis Rheum 50(10):3334–3345

    Article  CAS  PubMed  Google Scholar 

  • Peters LC, Jensen JR, Borrego A et al (2007) Slc11a1 (formerly NRAMP1) gene modulates both acute inflammatory reactions and pristane-induced arthritis in mice. Genes Immun 8(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Potter M, Wax JS (1981) Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. J Immunol 127(4):1591–1595

    CAS  PubMed  Google Scholar 

  • Roper RJ, Weis JJ, Mccracken BA et al (2001) Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2(7):388–397

    Article  CAS  PubMed  Google Scholar 

  • Runstadler JA, Saila H, Savolainen A et al (2005) Association of SLC11A1 (NRAMP1) with persistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum 52(1):247–256

    Article  CAS  PubMed  Google Scholar 

  • Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4 (Suppl 3):S265–S272

    Article  Google Scholar 

  • Silva GL, Junta CM, Sakamoto-Hojo ET et al (2009) Genetic susceptibility loci in rheumatoid arthritis establish transcriptional regulatory networks with other genes. Ann N Y Acad Sci 1173:521–537

    Article  CAS  PubMed  Google Scholar 

  • Stasiuk LM, Ghoraishian M, Elson CJ et al (1997) Pristane-induced arthritis is CD4+ T-cell dependent. Immunology 90(1):81–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira VH, Olaso R, Martin-Magniette ML et al (2009) Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS One 4(8):e6803

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson SJ, Elson CJ (1993) Susceptibility to pristane-induced arthritis is altered with changes in bowel flora. Immunol Lett 36(2):227–231

    Article  CAS  PubMed  Google Scholar 

  • Thompson SJ, Rook GA, Brealey RJ et al (1990) Autoimmune reactions to heat-shock proteins in pristane-induced arthritis. Eur J Immunol 20(11):2479–2484

    Article  CAS  PubMed  Google Scholar 

  • Thompson SJ, Hitsumoto Y, Zhang YW et al (1992) Agalactosyl IgG in pristane-induced arthritis. Pregnancy affects the incidence and severity of arthritis and the glycosylation status of IgG. Clin Exp Immunol 89(3):434–438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson SJ, Francis JN, Siew LK et al (1998) An immunodominant epitope from mycobacterial 65-kDa heat shock protein protects against pristane-induced arthritis. J Immunol 160(9):4628–4634

    CAS  PubMed  Google Scholar 

  • Van Den Berg WB (2009) Lessons from animal models of arthritis over the past decade. Arthritis Res Ther 11(5):250–259

    Article  PubMed Central  PubMed  Google Scholar 

  • Vidal SM, Epstein DJ, Malo D et al (1992) Identification and mapping of six microdissected genomic DNA probes to the proximal region of mouse chromosome 1. Genomics 14(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Vigar ND, Cabrera WH, Araujo LM et al (2000) Pristane-induced arthritis in mice selected for maximal or minimal acute inflammatory reaction. Eur J Immunol 30(2):431–437

    Article  CAS  PubMed  Google Scholar 

  • Vorraro F, Galvan A, Cabrera WH et al (2010) Genetic control of IL-1 beta production and inflammatory response by the mouse Irm1 locus. J Immunol 185(3):1616–1621

    Article  CAS  PubMed  Google Scholar 

  • Weis JJ, Mccracken BA, Ma Y et al (1999) Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J Immunol 162(2):948–956

    CAS  PubMed  Google Scholar 

  • You S, Yoo SA, Choi S et al (2014) Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci U S A 111(1):550–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu X, Bauer K, Koczan D et al (2007) Combining global genome and transcriptome approaches to identify the candidate genes of small-effect quantitative trait loci in collagen-induced arthritis. Arthritis Res Ther 9(1):3–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo De Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ibañez, O., Jensen, J., Franco, M. (2014). Transcriptome Profiling in Experimental Inflammatory Arthritis. In: Passos, G. (eds) Transcriptomics in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-11985-4_12

Download citation

Publish with us

Policies and ethics