Sempala: Interactive SPARQL Query Processing on Hadoop

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8796)


Driven by initiatives like, the amount of semantically annotated data is expected to grow steadily towards massive scale, requiring cluster-based solutions to query it. At the same time, Hadoop has become dominant in the area of Big Data processing with large infrastructures being already deployed and used in manifold application fields. For Hadoop-based applications, a common data pool (HDFS) provides many synergy benefits, making it very attractive to use these infrastructures for semantic data processing as well. Indeed, existing SPARQL-on- Hadoop (MapReduce) approaches have already demonstrated very good scalability, however, query runtimes are rather slow due to the underlying batch processing framework. While this is acceptable for data-intensive queries, it is not satisfactory for the majority of SPARQL queries that are typically much more selective requiring only small subsets of the data. In this paper, we present Sempala, a SPARQL-over-SQL-on-Hadoop approach designed with selective queries in mind. Our evaluation shows performance improvements by an order of magnitude compared to existing approaches, paving the way for interactive-time SPARQL query processing on Hadoop.


Property Table SPARQL Query Triple Pattern Data Layout Basic Graph Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cloudera Impala,
  2. 2.
  3. 3.
    Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data Management Using Vertical Partitioning. In: VLDB, pp. 411–422 (2007)Google Scholar
  4. 4.
    Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2(1), 922–933 (2009)Google Scholar
  5. 5.
    Afrati, F.N., Ullman, J.D.: Optimizing Multiway Joins in a Map-Reduce Environment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)CrossRefGoogle Scholar
  6. 6.
    Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on Semantic Web and Information Systems (IJSWIS) 5(2), 1–24 (2009)CrossRefGoogle Scholar
  7. 7.
    Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A Comparison of Join Algorithms for Log Processing in MapReduce. In: SIGMOD (2010)Google Scholar
  8. 8.
    Choi, P., Jung, J., Lee, K.-H.: RDFChain: Chain Centric Storage for Scalable Join Processing of RDF Graphs using MapReduce and HBase. In: ISWC (Posters & Demos), pp. 249–252 (2013)Google Scholar
  9. 9.
    Erling, O., Mikhailov, I.: Towards web scale RDF. In: Proc. SSWS (2008)Google Scholar
  10. 10.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. Web Semantics 3(2), 158 (2005)CrossRefGoogle Scholar
  11. 11.
    Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a Clustered RDF Store. In: SSWS, pp. 94–109 (2009)Google Scholar
  12. 12.
    Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF Graphs. PVLDB 4(11), 1123–1134 (2011)Google Scholar
  13. 13.
    Husain, M.F., Doshi, P., Khan, L., Thuraisingham, B.M.: Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce. In: CloudCom, pp. 680–686 (2009)Google Scholar
  14. 14.
    Husain, M.F., McGlothlin, J.P., Masud, M.M., Khan, L.R., Thuraisingham, B.M.: Heuristics-Based Query Processing for Large RDF Graphs Using Cloud Computing. IEEE TKDE 23(9) (2011)Google Scholar
  15. 15.
    Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.M., Castagna, P.: Jena-HBase: A Distributed, Scalable and Effcient RDF Triple Store. In: ISWC (Posters & Demos) (2012)Google Scholar
  16. 16.
    Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel: Interactive Analysis of Web-Scale Datasets. Proc. VLDB Endow. 3(1-2), 330–339 (2010)CrossRefGoogle Scholar
  17. 17.
    Myung, J., Yeon, J., Lee, S.-g.: SPARQL Basic Graph Pattern Processing with Iterative MapReduce. In: MDAC, pp. 1–6 (2010)Google Scholar
  18. 18.
    Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659 (2008)Google Scholar
  19. 19.
    Owens, A., Seaborne, A., Gibbins, N.: Clustered TDB: A Clustered Triple Store for Jena. In: WWW (2009)Google Scholar
  20. 20.
    Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P., Koziris, N.: H2RDF+: High-performance Distributed Joins over Large-scale RDF Graphs. In: BigData Conference, pp. 255–263 (2013)Google Scholar
  21. 21.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recom (2008),
  22. 22.
    Przyjaciel-Zablocki, M., Schätzle, A., Skaley, E., Hornung, T., Lausen, G.: Map-Side Merge Joins for Scalable SPARQL BGP Processing. In: CloudCom, pp. 631–638 (2013)Google Scholar
  23. 23.
    Rohloff, K., Schantz, R.E.: High-Performance, Massively Scalable Distributed Systems using the MapReduce Software Framework: The SHARD Triple-Store. In: PSI EtA, Reno, Nevada, pp. 4:1–4:4 (2010)Google Scholar
  24. 24.
    Schätzle, A., Przyjaciel-Zablocki, M., Dorner, C., Hornung, T., Lausen, G.: Cascading Map-Side Joins over HBase for Scalable Join Processing. In: SSWS+HPCSW, p. 59 (2012)Google Scholar
  25. 25.
    Schätzle, A., Przyjaciel-Zablocki, M., Hornung, T., Lausen, G.: PigSPARQL: A SPARQL Query Processing Baseline for Big Data. In: ISWC (Posters & Demos), pp. 241–244 (2013)Google Scholar
  26. 26.
    Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL to Pig Latin. In: SWIM, Athens, Greece, pp. 4:1–4:4 (2011)Google Scholar
  27. 27.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: A Warehousing Solution over a Map-Reduce Framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)CrossRefGoogle Scholar
  28. 28.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE: A Web-scale Parallel Inference Engine using MapReduce. J. Web Sem. 10, 59–75 (2012)CrossRefGoogle Scholar
  29. 29.
    Wilkinson, K.: Jena Property Table Implementation. In: SSWS, pp. 35–46 (2006)Google Scholar
  30. 30.
    Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and Retrieval in Jena2. In: SWDB, pp. 131–150 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of FreiburgFreiburgGermany

Personalised recommendations