Advertisement

Trace Abstraction Refinement for Timed Automata

  • Weifeng Wang
  • Li Jiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8837)

Abstract

Timed automata are a well known formalism for modeling real-time systems. Model checking of timed automata is important for ensuring that the systems satisfy certain properties. Safety is one of the most important properties for timed automata. In this paper we propose a method for the safety checking of timed automata, which is an adaptation of the general trace abstraction refinement framework to timed automata. The feature of our work is that we use zone-based LU-abstraction instead of interpolation techniques. This method performs zone computation only when necessary, and the abstraction on zones is coarser because only part of the control structure is considered when computing LU-bounds. We give an example to show when this method could perform more efficiently than the traditional zone-based search algorithm.

Keywords

Timed Automata Trace Abstraction Refinement Safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-structures for the verification of timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 346–360. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool suite for automatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Beyer, D.: Improvements in bdd-based reachability analysis of timed automata. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Ehlers, R., Fass, D., Gerke, M., Peter, H.-J.: Fully symbolic timed model checking using constraint matrix diagrams. In: RTSS, pp. 360–371. IEEE Computer Society (2010)Google Scholar
  11. 11.
    Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 36–52. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Launchbury, J., Mitchell, J.C. (eds.) POPL, pp. 58–70. ACM (2002)Google Scholar
  14. 14.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed automata. In: LICS, pp. 375–384. IEEE (2012)Google Scholar
  15. 15.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. CoRR abs/1301.3127 (2013)Google Scholar
  16. 16.
    Kemper, S., Platzer, A.: Sat-based abstraction refinement for real-time systems. Electr. Notes Theor. Comput. Sci. 182, 107–122 (2007)CrossRefGoogle Scholar
  17. 17.
    Kindermann, R., Junttila, T.A., Niemelä, I.: Beyond lassos: Complete smt-based bounded model checking for timed automata. In: Giese, H., Rosu, G. (eds.) FORTE/FMOODS 2012. LNCS, vol. 7273, pp. 84–100. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J. Comput. 6(3), 271–298 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Fully symbolic model checking of timed systems using difference decision diagrams. Electr. Notes Theor. Comput. Sci. 23(2), 88–107 (1999)CrossRefGoogle Scholar
  20. 20.
    Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved bdd-based discrete analysis of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 326–340. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 363–378. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Wang, F.: Efficient verification of timed automata with bdd-like data-structures. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Wozna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed automata via sat. Fundam. Inform. 55(2), 223–241 (2003)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2), 123–133 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zbrzezny, A.: Improvements in sat-based reachability analysis for timed automata. Fundam. Inf. 60(1-4), 417–434 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Weifeng Wang
    • 1
    • 2
  • Li Jiao
    • 1
  1. 1.State Key Laboratory of Computer ScienceInstitute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations