Advertisement

Deciding Entailments in Inductive Separation Logic with Tree Automata

  • Radu Iosif
  • Adam Rogalewicz
  • Tomáš Vojnar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8837)

Abstract

Separation Logic (SL) with inductive definitions is a natural formalism for specifying complex recursive data structures, used in compositional verification of programs manipulating such structures. The key ingredient of any automated verification procedure based on SL is the decidability of the entailment problem. In this work, we reduce the entailment problem for a non-trivial subset of SL describing trees (and beyond) to the language inclusion of tree automata (TA). Our reduction provides tight complexity bounds for the problem and shows that entailment in our fragment is EXPTIME-complete. For practical purposes, we leverage from recent advances in automata theory, such as inclusion checking for non-deterministic TA avoiding explicit determinization. We implemented our method and present promising preliminary experimental results.

Keywords

Span Tree Inductive System Atomic Proposition Tree Automaton Separation Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foundations for decision problems in separation logic with general inductive predicates. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 411–425. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion testing over nondeterministic finite tree automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and its neighbours. In: Proceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, pp. 130–139 (2010)Google Scholar
  7. 7.
    Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking manipulation of dynamic data structures using separation logic. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 372–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional Entailment Checking for a Fragment of Separation Logic. Technical Report FIT-TR-2014-01, FIT, Brno University of Technology (2014)Google Scholar
  11. 11.
    Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid and nested linked lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 129–148. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc. (2006)Google Scholar
  13. 13.
    Gorogiannis, N.: Cyclist: a cyclic theorem prover framework, https://github.com/ngorogiannis/cyclist/
  14. 14.
    Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 21–38. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Iosif, R., Rogalewicz, A., Vojnar, T.: Slide: Separation logic with inductive definitions, http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/
  16. 16.
    Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with tree automata. CoRR, abs/1402.2127 (2014)Google Scholar
  17. 17.
    Lengal, O., Simacek, J., Vojnar, T.: Vata: a tree automata library, http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
  18. 18.
    Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan, C.-C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of LICS 2002. IEEE CS Press (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Radu Iosif
    • 1
  • Adam Rogalewicz
    • 2
  • Tomáš Vojnar
    • 2
  1. 1.CNRS, VERIMAGUniversity Grenoble AlpesGrenobleFrance
  2. 2.FIT, IT4Innovations Centre of ExcellenceBrno University of TechnologyCzech Republic

Personalised recommendations