Skip to main content

Abstract

According to recent researches, glaucoma, an optic nerve disease, is considered as one of the major causes which can lead to blindness. It has affected a huge number of people worldwide. Rise in intraocular pressure of the eye leads to the disease resulting in progressive and permanent visual loss. Texture of normal retinal image and glaucoma image is different. Here texture property of the total image has been extracted from both with and without glaucoma image. In this work, Haralick features have been used to distinguish between normal and glaucoma affected retina. Extracted features have been utilized to train the back propagation neural network. Classification of glaucoma affected eye is successfully achieved with an accuracy of 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Varma, R., et al.: Disease progression and the need for neuroprotection in glaucoma management. Am. J. Manage Care 14, S15–S19 (2008)

    Google Scholar 

  2. Bock, R., Meier, J., Michelson, G., Nyúl, L.G., Hornegger, J.: Classifying glaucoma with image-based features from fundus photographs. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 355–364. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthal. 90(3), 262–267 (2006)

    Article  Google Scholar 

  4. The prevalence and types of glaucoma in Malay people: the Singapore Malay eye study. Invest Ophth. Vis. Sci. 49(9), 3846–3851 (2008)

    Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn., pp. 849–861. Pearson, USA (2010)

    Google Scholar 

  6. Lee, S.Y., Kim, K.K.: Automated Quantification of Retinal Nerve Fiber Layer Atrophy in Fundus Photograph. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA (2000)

    Google Scholar 

  7. Haralick, R.M., Shanmugam, K.: Textural features for Image classification. IEEE Tran. SMC. 3(6), 610–621 (1973)

    MathSciNet  Google Scholar 

  8. Tahir, M.A., Bouridane, A., Kurugollu, F.: An FPGA Based Coprocessor for GLCM and Haralick Texture Features and Their Application in Prostate Cancer Classification, vol. 43(2), pp. 205–215. Springer Science (2005)

    Google Scholar 

  9. Chandrika, S., Nirmala, K.: Comparative Analysis of CDR Detection for Glaucoma Diagnosis. Int. J. of Com. Sc. & App. 2(4) (2013)

    Google Scholar 

  10. Haykin, S.: Neural Networks-A comprehensive foundation. Mac. Press, NY (1994)

    MATH  Google Scholar 

  11. Alayon, S., Gonzalez de la Rosa, M., Fumero, F.J., Sigut Saavedra, J.F., Sanchez, J.L.: Variability between experts in defining the edge and area of the optic nerve head. Archivos de la Sociedad Española de Oftalmología (English Edition) 88(5), 168–173 (2013)

    Article  Google Scholar 

  12. Fumero, F., Alayon, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th Int. Sym. on CBMS, pp. 1–6 (2011)

    Google Scholar 

  13. Fawcett, T.: An introduction to ROC analysis. Patt. Rec. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Samanta, S., Ahmed, S.S., Salem, M.AM.M., Nath, S.S., Dey, N., Chowdhury, S.S. (2015). Haralick Features Based Automated Glaucoma Classification Using Back Propagation Neural Network. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-11933-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11933-5_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11932-8

  • Online ISBN: 978-3-319-11933-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics