K2-Treaps: Range Top-k Queries in Compact Space

  • Nieves R. Brisaboa
  • Guillermo de Bernardo
  • Roberto Konow
  • Gonzalo Navarro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8799)


Efficient processing of top-k queries on multidimensional grids is a common requirement in information retrieval and data mining, for example in OLAP cubes. We introduce a data structure, the K 2-treap, that represents grids in compact form and supports efficient prioritized range queries. We compare the K 2-treap with state-of-the-art solutions on synthetic and real-world datasets, showing that it uses 30% of the space of competing solutions while solving queries up to 10 times faster.


Real Dataset Range Query Synthetic Dataset Priority Queue Query Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting and rectangle stabbing in the pointer machine model. In: Proc. SCG, pp. 323–332 (2012)Google Scholar
  2. 2.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18(9), 509–517 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Bernardo, G., Álvarez-García, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Compact querieable representations of raster data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-length codes. Inf. Proc. Manag. 49(1), 392–404 (2013)CrossRefGoogle Scholar
  5. 5.
    Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of web graphs with extended functionality. Inf. Sys. 39(1), 152–174 (2014)CrossRefGoogle Scholar
  6. 6.
    Chazelle, B.: Lower bounds for orthogonal range searching I: The reporting case. J. ACM 37(2), 200–212 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comp. 40(2), 465–492 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range maximum queries. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In: Proc. 14th SODA, pp. 841–850 (2003)Google Scholar
  11. 11.
    Konow, R., Navarro, G., Clarke, C., López-Ortíz, A.: Faster and smaller inverted indices with treaps. In: Proc. 36th SIGIR, pp. 193–202 (2013)Google Scholar
  12. 12.
    Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Martínez, C., Roura, S.: Randomized binary search trees. J. ACM 45(2), 288–323 (1997)CrossRefGoogle Scholar
  14. 14.
    McCreight, E.M.: Priority search trees. SIAM J. Comp. 14(2), 257–276 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear space. In: Proc. 23rd SODA, pp. 1066–1078 (2012)Google Scholar
  17. 17.
    Navarro, G., Nekrich, Y., Russo, L.: Space-efficient data-analysis queries on grids. Theor. Comp. Sci. 482, 60–72 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16(4/5), 464–497 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nieves R. Brisaboa
    • 1
  • Guillermo de Bernardo
    • 1
  • Roberto Konow
    • 2
    • 3
  • Gonzalo Navarro
    • 2
  1. 1.Databases Lab.Univ. of A. CoruñaSpain
  2. 2.Dept. of Computer ScienceUniv. of ChileChile
  3. 3.Escuela de Informática y TelecomunicacionesUniv. Diego PortalesChile

Personalised recommendations