A New Multi-region Modified Wind Driven Optimization Algorithm with Collision Avoidance for Dynamic Environments

  • Abdennour Boulesnane
  • Souham Meshoul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8795)


This paper describes a new approach to deal with dynamic optimization that uses a multi-population. Its main features include the use of a modified wind driven optimization algorithm that aims to foster impact of pressure on velocities of particles. Moreover, a concept of multi-region inspired from meteorology has been introduced along with a new collision avoidance technique to maintain good diversity while preventing collision between sub-populations. The method has been assessed using Moving Peaks Benchmark and compared to state of the art methods. Preliminary results are very encouraging and show viability of the method.


Dynamic optimization Swarm intelligence Wind driven optimization collision multiple population methods Moving Peaks Benchmark 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderín, J.F., Masegosa, A.D., Suárez, A.R., Pelta, D.A.: Adaptation Schemes and Dynamic Optimization problems: A Basic Study on the Adaptive Hill Climbing Memetic Algorithm. In: Terrazas, G., Otero, F.E.B., Masegosa, A.D. (eds.) NICSO 2013. SCI, vol. 512, pp. 85–97. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Yang, S., Yao, X. (eds.): Evolutionary Computation for Dynamic Optimization Problems. SCI, vol. 490. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  3. 3.
    Bayraktar, Z., Komurcu, M., Bossard, J.A., Werner, D.H.: The Wind Driven Optimization Technique and its Application in Electromagnetics. IEEE Transactions on Antennas and Propagation 61(5), 2745–2757 (2013)CrossRefMathSciNetGoogle Scholar
  4. 4.
    James, R.H.: An Introduction to Dynamic Meteorology, 4th edn., USA, vol. 88 (2004)Google Scholar
  5. 5.
    Chao, C.W., Fang, S.C., Liao, C.J.: A Tropical Cyclone-Based Method For Global Optimization. Journal of Industrial And Management Optimization 8, 103–115 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms. PhD thesis, School of Computer Science, University of Birmingham (2011)Google Scholar
  7. 7.
    Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)CrossRefGoogle Scholar
  8. 8.
    Branke, J.: The moving peaks benchmark , (viewed November 8, 2008)
  9. 9.
    Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Advances in Evolutionary Computing: Theory and Applications, pp. 239–262 (2003)Google Scholar
  10. 10.
    Kamosi, M., Hashemi, A.B., Meybodi, M.R.: A hibernating multi-swarm optimization algorithm for dynamic environments. In: Proc. World Congr. on Nature and Biologically Inspired Computing, NaBIC 2010, pp. 363–369 (2010)Google Scholar
  11. 11.
    Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multi-ple optima in dynamic environments. IEEE Trans. Evol. Comput., 959–974 (2010)Google Scholar
  12. 12.
    Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)CrossRefGoogle Scholar
  13. 13.
    Li, C., Yang, S.: A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans. Evol. Comput. 16(4), 556–577 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abdennour Boulesnane
    • 1
    • 2
  • Souham Meshoul
    • 1
  1. 1.Computer Science DepartmentConstantine 2 UniversityAlgeria
  2. 2.MISC LaboratoryConstantineAlgeria

Personalised recommendations