Reactive Transport

  • Christof BeyerEmail author
  • Thomas Nagel
  • Haibing Shao
Part of the Terrestrial Environmental Sciences book series (TERENVSC)


Dissolution of organic contaminants from non-aqueous phase liquid (NAPL) source zones and their spreading in groundwater is an ubiquitous problem especially in urban regions.


Convection Boundary Condition Interphase Mass Transfer Interphase Heat Transfer NAPL Saturation NAPL Dissolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Kolditz, U.-J. Görke, H. Shao, and W. Wang. Thermo-Hydro-Mechanical-Chemical Processes in Porous Media: Benchmarks and Examples. Lecture notes in computational science and engineering. Springer, 2012.Google Scholar
  2. 2.
    S. E. Powers, L. M. Abriola, J. S. Dunkin, and W.J. Weber Jr. Phenomenological models for transient NAPL-water mass-transfer processes. Journal of Contaminant Hydrology, 16:1–33, 1994.Google Scholar
  3. 3.
    S. A. Bradford and L. M. Abriola. Dissolution of residual tetrachloroethylene in fractional wettability porous media: Incorporation of interfacial area estimates. Water Resources Research, 37:1183–1195, 2001.Google Scholar
  4. 4.
    P. Grathwohl. Diffusion in Natural Porous Media. Topics in Environmental Fluid Mechanics. Kluwer, 1998.Google Scholar
  5. 5.
    S. K. Hansen and B. H. Kueper. An analytical solution to multi-component NAPL dissolution equations. Advances in Water Resources, 30:382–388, 2007.Google Scholar
  6. 6.
    A. C. Lasaga, J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy. Chemical weathering rate laws and global geochemical cycles. Geochimica Cosmochimica Acta, 58:2361–2386, 1994.Google Scholar
  7. 7.
    A. C. Lasaga. Fundamental approaches in describing mineral dissolution and precipitation rates. In White A.F., Brantley S.L. (eds) Chemical Weathering Rates of Silicates Minerals, Reviews in Mineralogy 31, BookCrafters, Chelsea, 1995.Google Scholar
  8. 8.
    P. Engesgaard and K. L. Kipp. A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite. Water Resources Research, 28:2829–2843, 1992.Google Scholar
  9. 9.
    C. Beyer, D. Li, M. de Lucia, M. Kuehn, and S. Bauer. Modelling \(CO_{2}\)- induced fluid-rock interaction in the altensalzwedel gas reservoir, part II-coupled reactive transport simulations. Environmental Earth Sciences, 67:573–588, 2012.Google Scholar
  10. 10.
    D. Li, S. Bauer, K. Benisch, B. Graupner, and C. Beyer. OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems: Code development and application at a representative \(CO_{2}\) storage formation in Northern Germany. Acta Geotechnica, page published online, 2013.Google Scholar
  11. 11.
    J. L. Palandri and Y. K. Kharaka. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. Technical report, US Geol Survey Water-Resources Investigations Report 04-1068, 2004.Google Scholar
  12. 12.
    T. Nagel, H. Shao, A.K. Singh, N. Watanabe, C. Rosskopf, M. Linder, A. Woerner, and O. Kolditz. Non-equilibrium thermochemical heat storage in porous media: Part 1 - conceptual model. Energy, 60:254–270, 2013.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.GeoHydroModellierungInstitut für Geowissenschaften, Christian-Albrechts-Universitaet zu KielKielGermany
  2. 2.Department of Environmental InformaticsHelmholtz Centre for Environmental Research GmbH-UFZLeipzigGermany

Personalised recommendations