Skip to main content

Abstract

The novel oncogene with kinase domain (NOK) is believed to be a typical receptor “pseudokinase” because of its lack of Asp-Phe-Gly (DFG) motif and therefore is unable to transfer phosphate group to the substrate. However, functional analysis demonstrates that NOK is a potent oncogene that could induce cellular transformation, tumorigenesis, and metastasis. Mechanism studies reveal that NOK activates multiple mitogenic signaling pathways such as Ras/MAPK, PI3K/Akt, STAT1, STAT3, and STAT5 signaling pathways. The pleiotropy of NOK oncogene is represented by its ability to directly and physically interact with and subsequently activate a broad and diverse important signaling molecules. On the other hand, NOK also harbors multiple autoinhibitory elements that provide its own with the fine adjustment ability to control the activation strength of downstream signaling cascades. Another level of control that may contribute to NOK-mediated oncogenicity is its self-aggregation ability by forming homo-dimmer and homo-oligomer in which the activated state of NOK could be further enhanced. More importantly, it has been shown recently that NOK might be among the few genes uniquely expressed in the innate and activated NK cells. Examination on patient samples indicates that NOK may have diagnostic, prognostic, or therapeutic values in many types of human cancers, including breast cancer, lung cancer, ovarian cancer, acute leukemia, and prostate cancer. Although significant works have been achieved in the past, understanding on NOK-mediated physiological and pathological functions is still in its infancy and needed to be further unveiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDK:

Cyclin-dependent kinases

CNPC:

Castration-naïve prostate cancer

CRPC:

Castration-resistant prostate cancer

DFG:

Asp-Phe-Gly

EGFR:

Epidermal growth factor receptor

EPOR:

Erythropoietin receptor

ERα:

Estrogen receptor-alpha

ERK1/2:

Extracellular signal-regulated kinases 1/2 (ERK1/2)

GSK-3β:

Glycogen synthase kinase-3 beta

H&E staining:

Hematoxylin-eosin staining

JAK:

Janus kinase

NKT:

Natural killer T cells

NOK:

Novel oncogene with kinase domain

PC:

Prostate cancer

PI3K:

Phosphoinositide 3 kinase

RAS/MAPK:

Ras/mitogen-activated protein kinase (MAPK) pathway

RPTK:

Receptor protein tyrosine kinase

Serine/threonine-specific kinase:

Akt

STAT:

Signal transducers and activators of transcription

STYK1:

Serine/threonine/tyrosine kinase 1

References

  1. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    Article  CAS  PubMed  Google Scholar 

  2. Ye X, Ji C, Huang Q, Cheng C, Tang R, Xu J, et al. Isolation and characterization of a human putative receptor protein kinase cDNA STYK1. Mol Biol Rep. 2003;30(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  3. Liu L, Yu XZ, Li TS, Song LX, Chen PL, Suo TL, et al. A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res. 2004;64(10):3491–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  5. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ding X, Jiang QB, Li R, Chen S, Zhang S. NOK/STYK1 has a strong tendency towards forming aggregates and colocalises with epidermal growth factor receptor in endosomes. Biochem Biophys Res Commun. 2012;421(3):468–73.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Li YH, Chen XP, Gong LM, Zhang SP, Chang ZJ, et al. Point mutation at single tyrosine residue of novel oncogene NOK abrogates tumorigenesis in nude mice. Cancer Res. 2005;65(23):10838–46.

    Article  CAS  PubMed  Google Scholar 

  8. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science. 1999;286(5438):309–12.

    Article  CAS  PubMed  Google Scholar 

  9. Chung S, Tamura K, Furihata M, Uemura M, Daigo Y, Nasu Y, et al. Overexpression of the potential kinase serine/threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer. Cancer Sci. 2009;100(11):2109–14.

    Article  CAS  PubMed  Google Scholar 

  10. Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Sudhof TC, et al. CASK Functions as a Mg2+-independent neurexin kinase. Cell. 2008;133(2):328–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zeqiraj E, Filippi BM, Goldie S, Navratilova I, Boudeau J, Deak M, et al. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS Biol. 2009;7(6):e1000126.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res. 2011;71(8):3132–41.

    Article  CAS  PubMed  Google Scholar 

  13. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA. 2011;107(17):7692–7.

    Article  Google Scholar 

  14. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. Emerging roles of pseudokinases. Trends Cell Biol. 2006;16(9):443–52.

    Article  CAS  PubMed  Google Scholar 

  15. Zeqiraj E, van Aalten DM. Pseudokinases-remnants of evolution or key allosteric regulators? Curr Opin Struct Biol. 2010;20(6):772–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rajakulendran T, Sicheri F. Allosteric protein kinase regulation by pseudokinases: insights from STRAD. Sci Signal. 2010;3(111):e8.

    Article  Google Scholar 

  17. Kannan N, Taylor SS. Rethinking pseudokinases. Cell. 2008;133(2):204–5.

    Article  CAS  PubMed  Google Scholar 

  18. Taylor SS, Kornev AP. Yet another “active” pseudokinase, Erb3. Proc Natl Acad Sci USA. 2011;107(18):8047–8.

    Article  Google Scholar 

  19. Brennan PJ, Kumagai T, Berezov A, Murali R, Greene MI. HER2/neu: mechanisms of dimerization/oligomerization. Oncogene. 2000;19(53):6093–101.

    Article  CAS  PubMed  Google Scholar 

  20. Clayton AH, Walker F, Orchard SG, Henderson C, Fuchs D, Rothacker J, et al. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J Biol Chem. 2005;280(34):30392–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kani K, Warren CM, Kaddis CS, Loo JA, Landgraf R. Oligomers of ERBB3 have two distinct interfaces that differ in their sensitivity to disruption by heregulin. J Biol Chem. 2005;280(9):8238–47.

    Article  CAS  PubMed  Google Scholar 

  22. Landgraf R, Eisenberg D. Heregulin reverses the oligomerization of HER3. Biochemistry. 2000;39(29):8503–11.

    Article  CAS  PubMed  Google Scholar 

  23. Lackmann M, Oates AC, Dottori M, Smith FM, Do C, Power M, et al. Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem. 1998;273(32):20228–37.

    Article  CAS  PubMed  Google Scholar 

  24. Li YH, Wang YY, Zhong S, Rong ZL, Ren YM, Li ZY, et al. Transmembrane helix of novel oncogene with kinase-domain (NOK) influences its oligomerization and limits the activation of RAS/MAPK signaling. Mol Cells. 2009;27(1):39–45.

    Article  PubMed  Google Scholar 

  25. Easty DJ, Gray SG, O’Byrne KJ, O’Donnell D, Bennett DC. Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res. 2011;24(3):446–61.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129(5):957–68.

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez-Viciana P, McCormick F. RalGDS comes of age. Cancer Cell. 2005;7(3):205–6.

    Article  CAS  PubMed  Google Scholar 

  28. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.

    Article  PubMed  Google Scholar 

  29. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Li YH, Rong Y, Chang ZJ, Liu L. NOK interacts with Akt and enhances its activation. Prog Biochem Biophys. 2008;35(1):29–34.

    Google Scholar 

  31. Li J, Wu F, Sheng F, Li YJ, Jin D, Ding X, et al. NOK/STYK1 interacts with GSK-3beta and mediates Ser9 phosphorylation through activated Akt. FEBS Lett. 2012;586(21):3787–92.

    Article  CAS  PubMed  Google Scholar 

  32. Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH. Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem. 2000;275(20):15099–105.

    Article  CAS  PubMed  Google Scholar 

  33. Lai KO, Chen Y, Po HM, Lok KC, Gong K, Ip NY. Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression. J Biol Chem. 2004;279(14):13383–92.

    Article  CAS  PubMed  Google Scholar 

  34. Himpe E, Kooijman R. Insulin-like growth factor-I receptor signal transduction and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) pathway. Biofactors. 2009;35(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med. 2000;192(5):719–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Quelle FW, Thierfelder W, Witthuhn BA, Tang B, Cohen S, Ihle JN. Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J Biol Chem. 1995;270(35):20775–80.

    Article  CAS  PubMed  Google Scholar 

  37. Vignais ML, Sadowski HB, Watling D, Rogers NC, Gilman M. Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol Cell Biol. 1996;16(4):1759–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Chen J, Sadowski HB, Kohanski RA, Wang LH. Stat5 is a physiological substrate of the insulin receptor. Proc Natl Acad Sci USA. 1997;94(6):2295–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Silva CM. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene. 2004;23(48):8017–23.

    Article  CAS  PubMed  Google Scholar 

  40. Miranda C, Fumagalli T, Anania MC, Vizioli MG, Pagliardini S, Pierotti MA, et al. Role of STAT3 in in vitro transformation triggered by TRK oncogenes. PLoS One. 2010;5(3):e9446.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20(20):2499–513.

    Article  CAS  PubMed  Google Scholar 

  42. Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T, et al. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res. 2005;65(5):1729–37.

    Article  PubMed  Google Scholar 

  43. Li YH, Zhong S, Rong ZL, Ren YM, Li ZY, Zhang SP, et al. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions. Biochem Biophys Res Commun. 2007;356(2):444–9.

    Article  CAS  PubMed  Google Scholar 

  44. Li YH, Rong Y, Chang ZJ, Liu L. NOK activates STAT3 signaling by a JAK2-dependent mechanism. Prog Biochem Biophys. 2008;35(2):143–50.

    CAS  Google Scholar 

  45. Johnston PA, Grandis JR. STAT3 signaling: anticancer strategies and challenges. Mol Interv. 2011;11(1):18–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu B, Liu L. Influence and mechanism of NOK oncogene on G1/S distribution in human embryonic kidney 293T cells. Basic Clin Med. 2014;34(4):470–4.

    Google Scholar 

  47. Cheetham GM. Novel protein kinases and molecular mechanisms of autoinhibition. Curr Opin Struct Biol. 2004;14(6):700–5.

    Article  CAS  PubMed  Google Scholar 

  48. Bose R, Zhang X. The ErbB kinase domain: structural perspectives into kinase activation and inhibition. Exp Cell Res. 2009;315(4):649–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Schlessinger J. Signal transduction. Autoinhibition control. Science. 2003;300(5620):750–2.

    Article  CAS  PubMed  Google Scholar 

  50. Hubbard SR. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5(6):464–71.

    Article  CAS  PubMed  Google Scholar 

  51. Reindl C, Spiekermann K. From kinases to cancer: leakiness, loss of autoinhibition and leukemia. Cell Cycle. 2006;5(6):599–602.

    Article  CAS  PubMed  Google Scholar 

  52. Chang CM, Shu HK, Ravi L, Pelley RJ, Shu H, Kung HJ. A minor tyrosine phosphorylation site located within the CAIN domain plays a critical role in regulating tissue-specific transformation by erbB kinase. J Virol. 1995;69(2):1172–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell. 2001;12(4):931–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol. 2012;13(10):1000–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lotem J, Levanon D, Negreanu V, Leshkowitz D, Friedlander G, Groner Y. Runx3-mediated transcriptional program in cytotoxic lymphocytes. PLoS One. 2013;8(11):e80467.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Amachika T, Kobayashi D, Moriai R, Tsuji N, Watanabe N. Diagnostic relevance of overexpressed mRNA of novel oncogene with kinase-domain (NOK) in lung cancers. Lung Cancer. 2007;56(3):337–40.

    Article  PubMed  Google Scholar 

  57. Kimbro KS, Duschene K, Willard M, Moore JA, Freeman S. A novel gene STYK1/NOK is upregulated in estrogen receptor-alpha negative estrogen receptor-beta positive breast cancer cells following estrogen treatment. Mol Biol Rep. 2008;35(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  58. Moriai R, Kobayashi D, Amachika T, Tsuji N, Watanabe N. Diagnostic relevance of overexpressed NOK mRNA in breast cancer. Anticancer Res. 2006;26(6C):4969–73.

    CAS  PubMed  Google Scholar 

  59. Orang AV, Safaralizadeh R, Hosseinpour Feizi MA, Somi MH. Diagnostic relevance of overexpressed serine threonine tyrosine kinase/novel oncogene with kinase domain (STYK1/ NOK) mRNA in colorectal cancer. Asian Pac J Cancer Prev. 2014;15(16):6685–9.

    Article  PubMed  Google Scholar 

  60. Kondoh T, Kobayashi D, Tsuji N, Kuribayashi K, Watanabe N. Overexpression of serine threonine tyrosine kinase 1/novel oncogene with kinase domain mRNA in patients with acute leukemia. Exp Hematol. 2009;37(7):824–30.

    Article  CAS  PubMed  Google Scholar 

  61. Jackson KA, Oprea G, Handy J, Kimbro KS. Aberrant STYK1 expression in ovarian cancer tissues and cell lines. J Ovarian Res. 2009;2(1):15.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Chen P, Li WM, Lu Q, Wang J, Yan XL, Zhang ZP, et al. Clinicopathologic features and prognostic implications of NOK/STYK1 protein expression in non-small cell lung cancer. BMC Cancer. 2014;14:402.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Nirasawa S, Kobayashi D, Kondoh T, Kuribayashi K, Tanaka M, Yanagihara N, et al. Significance of serine threonine tyrosine kinase 1 as a drug resistance factor and therapeutic predictor in acute leukemia. Int J Oncol. 2014;45(5):1867–74.

    CAS  PubMed  Google Scholar 

  64. Gronberg H. Prostate cancer epidemiology. Lancet. 2003;361(9360):859–64.

    Article  PubMed  Google Scholar 

  65. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W, et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 2007;67(11):5117–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work is supported by National Natural Science Foundation of China (grant No. 30871283 and 81171944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu .

Editor information

Editors and Affiliations

Receptor at a glance: NOK

Receptor at a glance: NOK

Chromosome location

Chromosome 12p13.2

Gene size (bp)

1,269

Intron/exon number

10/11

Amino acid number

422

KDa

46.4

Posttranslational modifications

Phosphorylation, N-glycosylation, ubiquitination, and myristoylation

Domains

Tyrosine kinase domain, transmembrane domain

Ligands

None

Known dimerizing partners

Homodimer and homotrimer

Pathways activated

RAS/MAPK, PI3K/Akt, STATs

Tissue expressed

Highly expressed in prostate; moderately expressed in the colon, brain, and placenta; can be detected in some cancer cell lines such as hepatoma cells LO2, cervix carcinoma cells HeLa, ovary cancer cells Ho8910 and chronic myelogenous leukemia cells K562; but not be detected in other cancer cell lines such as macrophage/monocyte lineages (U937, Ana-1, and HL-60) and human epidermoid carcinoma A431. Undetectable in most normal lung tissues, widely expressed in lung cancers. Uniquely expressed in the resting and activated NK cells

Human diseases

Breast cancer, lung cancer, ovarian cancer, acute leukemia, prostate cancer, and colorectal cancer

Knockout mouse phenotype

Not known

Cellular localization

Cytoplasm

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, L. (2015). The NOK Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_19

Download citation

Publish with us

Policies and ethics