Urban Emotions—Geo-Semantic Emotion Extraction from Technical Sensors, Human Sensors and Crowdsourced Data

  • Bernd ReschEmail author
  • Anja Summa
  • Günther Sagl
  • Peter Zeile
  • Jan-Philipp Exner
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


How people in the city perceive their surroundings depends on a variety of dynamic and static context factors such as road traffic, the feeling of safety, urban architecture, etc. Such subjective and context-dependent perceptions can trigger different emotions, which enable additional insights into the spatial and temporal configuration of urban structures. This paper presents the Urban Emotions concept that proposes a human-centred approach for extracting contextual emotional information from human and technical sensors. The methodology proposed in this paper consists of four steps: (1) detecting emotions using wristband sensors, (2) “ground-truthing” these measurements using a People as Sensors location-based service, (3) extracting emotion information from crowdsourced data like Twitter, and (4) correlating the measured and extracted emotions. Finally, the emotion information is mapped and fed back into urban planning for decision support and for evaluating ongoing planning processes.


People as sensors Urban planning VGI Crowdsourcing Emotion detection 



The authors would like to express their gratitude to the German Research Foundation (DFG—Deutsche Forschungsgemeinschaft) for supporting the project “Urban Emotions”, reference number ZE 1,018/1-1 and RE 3,612/1-1. This research has been supported by the Klaus Tschira Stiftung gGmbH.


  1. Agirre E, Diab M, Cer D, Gonzalez-Agirre A (2012) Semeval-2012 task 6: a pilot on semantic textual similarity. In: Proceedings of the first joint conference on lexical and computational semantics, Montreal, 7–8 June, pp 385–393Google Scholar
  2. Batty M (2014) Can it happen again? Planning support, lee’s requiem and the rise of the smart cities movement. Environ Plan B: Plan Des 41(3):388–391CrossRefGoogle Scholar
  3. Baluja S, Seth R, Sivakumar D, Jing Y, Yagnik J, Kumar S, Ravichandran D, Aly M (2008) Video suggestion and discovery for youtube: taking random walks through the view graph. In: Proceedings of the 17th ACM international world wide web conference, Beijing, 21–25 April 2008, pp 895–904Google Scholar
  4. Bollen J, Mao H, Pepe A (2011) Modeling public mood and emotion: twitter sentiment and socio-economic phenomena. In: Proceedings of the fifth international AAAI conference on weblogs and social media (ICWSM), Barcelona, 17–21 July 2011Google Scholar
  5. Bradley MM, Lang PJ (1999) Affective norms for english words (ANEW): instruction manual and affective ratings. Technical Report C-1, The Center for Research in Psychophysiology, University of Florida, pp 1–45Google Scholar
  6. Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Pers Soc Psychol 17(2):124–129CrossRefGoogle Scholar
  7. Exner J-P (2014) Smart cities and smart planning. In: Schrenk M et al (eds) Proceedings of RealCORP 2014, Vienna, 21–23 May 2014, pp 603–610Google Scholar
  8. Gartner G (2010) Emotional response to space as an additional concept of supporting wayfinding in ubiquitous cartography. Mapping different geographies. Springer, Berlin, pp 67–73Google Scholar
  9. Geertman S (2002) Participatory planning and GIS: a PSS to bridge the gap. Environ Plan B: Plan Des 29:21–35CrossRefGoogle Scholar
  10. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJ 69(4):211–221CrossRefGoogle Scholar
  11. Hahmann S, Burghardt D (2013) How much information is geospatially referenced? Networks and cognition. Int J Geogr Inform Sci 27(6):1171–1189Google Scholar
  12. Hauthal, E (2013) Detection, analysis and visualisation of georeferenced emotions. In: Proceedings of the 26th international cartographic conference (ICC 2013), Dresden, Germany, 25–30 Aug 2013Google Scholar
  13. Klettner S, Schmidt M (2012) Visualisierung von Emotionen im Raum. Kartographisches Denken. Springer, Vienna, pp 398–399Google Scholar
  14. Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. Mining text data. Springer, USA, pp 415–463CrossRefGoogle Scholar
  15. Matei S, Ball-Rokeach SJ, Qiu JL (2001) Fear and misperception of Los Angeles urban space—a spatial-statistical study of communication-shaped mental maps. Commun Res 28(4):429–463Google Scholar
  16. Mohammad SM (2011) Even the abstract have colour: consensus in word–colour associations. In: Proceedings of the 49th annual meeting of the association for computational linguistics, Portland, 19–24 June 2011, pp 368–373Google Scholar
  17. Nold C (2009) Emotional cartography—technologies of the self, ISBN 978-0-9557623-1-4S. 14 May 2014,
  18. Owoputi O, O’Connor B, Dyer C, Gimpel K, Schneider N, Smith NA (2013) In: Proceedings of the conference of the north american chapter of the association for computational linguistics: human language technologies (NAACL HLT 2013), Atlanta, 9–15 June 2013, pp 380–390Google Scholar
  19. Resch B, Britter R, Ratti C (2012) Live urbanism—towards the senseable city and beyond. In: Pardalos P, Rassia S (eds) Sustainable architectural design: impacts on health. Springer, New York, pp 175–184CrossRefGoogle Scholar
  20. Resch B (2013) People as sensors and collective sensing—contextual observations complementing geo-sensor network measurements. Progress in location-based services. Springer, Berlin, pp 391–406CrossRefGoogle Scholar
  21. Roberts K, Roach MA, Johnson J, Guthrie J, Harabagiu SM (2012) EmpaTweet: annotating and detecting emotions on twitter. In: Proceedings of the international conference on language resources and evaluation (LREC), Istanbul, 21–27 May 2012, pp 3806–3813Google Scholar
  22. Sagl G, Resch B, Hawelka B, Beinat E (2012) From social sensor data to collective human behaviour patterns: analysing and visualising spatio-temporal dynamics in urban environments. In: GI-Forum 2012: geovisualization, society and learning, wichmann Verlag, Berlin, pp 54–63Google Scholar
  23. Salesses P, Schechtner K, Hidalgo CA (2013) The collaborative image of the city: mapping the inequality of urban perception. PLoS ONE 8(7):e68400CrossRefGoogle Scholar
  24. Scott B, Neil T (2009) Designing web interfaces: principles and patterns for rich interactions. O’Reilly media, SebastopolGoogle Scholar
  25. Streich B (2011) Stadtplanung in der Wissensgesellschaft—Ein Handbuch, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  26. Takhteyev Y, Gruzd A, Wellman B (2012) Geography of twitter networks. Soc Netw 34(1):73–81CrossRefGoogle Scholar
  27. Talukdar PP, Crammer K (2009) New regularized algorithms for transductive learning. Machine learning and knowledge discovery in databases. Springer, Berlin, pp 442–457CrossRefGoogle Scholar
  28. Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ geogr 234–240 Google Scholar
  29. Zeile P, Resch B, Exner J-P, Sagl G, Summa A (2014) Urban emotions—Kontextuelle Emotionsinformationen für die Räumliche Planung auf Basis von Echtzeit-Humansensorik und Crowdsourcing-Ansätzen. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2014. Wichmann Verlag, Heidelberg, pp 664–669Google Scholar
  30. Zeile P, Höffken S, Papastefanou G (2009) Mapping people?—The measurement of physiological data in city areas and the potential benefit for urban planning. In: Proceedings of RealCORP 2009, Vienna, 22–25 April 2009, pp 341–352Google Scholar
  31. Zhu X, Ghahramani Z (2002) Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, PittsburghGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernd Resch
    • 1
    • 2
    • 3
    Email author
  • Anja Summa
    • 2
  • Günther Sagl
    • 1
    • 2
  • Peter Zeile
    • 4
  • Jan-Philipp Exner
    • 4
  1. 1.Department of GeoinformaticsUniversity of SalzburgSalzburgAustria
  2. 2.Institute of Geography—GIScienceHeidelberg UniversityHeidelbergGermany
  3. 3.Center for Geographic AnalysisHarvard UniversityCambridgeUSA
  4. 4.Computergestützte Planungs- und Entwurfsmethoden (CPE)University of KaiserslauternKaiserslauternGermany

Personalised recommendations