Skip to main content

Role of Tryptophan Metabolism in Mood, Behavior, and Cognition

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

During Th1-type immune response, tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) becomes activated and accelerates the breakdown of tryptophan, as expressed by a higher kynurenine to tryptophan ratio. Lowered tryptophan concentrations were detected in patients suffering from immunopathologies like virus infections, autoimmune syndromes, and certain types of cancer, and in some of these clinical conditions, an association between enhanced tryptophan breakdown and mood disturbances was observed. Tryptophan is required for the biosynthesis of 5-hydroxytryptamine (serotonin), and the availability of tryptophan in the blood is linked to its concentration in the brain, as tryptophan can cross the blood-brain barrier. In patients at risk for cardiovascular disease, higher concentrations of neopterin are associated with lower concentrations of vitamins C and E and other antioxidants. Data may indicate that chronic immune activation leads to an enhanced degradation of oxidation-sensitive biomolecules. Likewise, additional antioxidant vitamin supplementation might be able to counteract the inflammation process. However, this concept is mainly derived from in vitro data, whereas in vivo findings remain scarce. In vitro, it was also documented that several antioxidant compounds including vitamins C and E and stilbene resveratrol but also food preservatives and colorants are able to slow down Th1-type immune activation leading to a suppression of IDO activity. Similar effects were observed for extracts of beverages known to be rich in antioxidants like wine, beer, cacao, and coffee. The suppressive effects of antioxidant molecules and extracts on tryptophan breakdown could relate to their mood-enhancing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GCH:

GTP cyclohydrolase I

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon-γ

iNOS:

Inducible nitric oxide synthase

Kyn/Trp:

Kynurenine to tryptophan ratio

NAD:

Nicotinamide adenine dinucleotide

NF-κB:

Nuclear factor-κB

ROS:

Reactive oxygen species

TDO:

Tryptophan 2,3-dioxygenase

TNF:

Tumor necrosis factor

References

  1. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. 2009;2:1–19.

    PubMed Central  PubMed  Google Scholar 

  2. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem. 1997;43:2424–6.

    CAS  PubMed  Google Scholar 

  3. Werner ER, Bitterlich G, Fuchs D, Hausen A, Reibnegger G, Szabo G, et al. Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci. 1987;41:273–80.

    Article  CAS  PubMed  Google Scholar 

  4. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Tumour necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells. Biol Chem Hoppe Seyler. 1989;370:1063–9.

    Article  CAS  PubMed  Google Scholar 

  5. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1). Cancer Res. 1990;50:2863–7.

    CAS  PubMed  Google Scholar 

  6. Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, Brown RR. Induction of tryptophan degradation in vitro and in vivo: a gamma-interferon-stimulated activity. J Interferon Res. 1986;64:389–96.

    Article  Google Scholar 

  7. Widner B, Sepp N, Kowald E, Ortner U, Wirleitner B, Fritsch P, et al. Enhanced tryptophan degradation in systemic lupus erythematosus. Immunobiology. 2000;201:621–30.

    Article  CAS  PubMed  Google Scholar 

  8. Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology. 2007;214:8–14.

    Article  PubMed  Google Scholar 

  9. Giusti RM, Maloney EM, Hanchard B, Morgan OSC, Steinberg SM, Wachter H, et al. Differential patterns of serum biomarkers of immune activation in human T-cell lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia/ lymphoma. Cancer Epidemiol Biomark Prev. 1996;5:699–709.

    CAS  Google Scholar 

  10. Schroecksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. 2006;364:82–90.

    Article  CAS  Google Scholar 

  11. Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen-Mersh TG. Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br J Cancer. 2002;86:1691–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schröcksnadel H, Baier-Bitterlich G, Dapunt O, Wachter H, Fuchs D. Decreased plasma tryptophan in pregnancy. Obstet Gynecol. 1996;88:47–50.

    Article  PubMed  Google Scholar 

  13. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992;115:1249–73.

    Article  PubMed  Google Scholar 

  14. Theofylaktopoulou D, Ulvik A, Midttun O, Ueland PM, Vollset SE, Nygård O, et al. Vitamins B2 and B6 as determinants of kynurenines and related markers of interferon-γ-mediated immune activation in the community-based Hordaland Health Study. Br J Nutr. 2014;8:1–8.

    Google Scholar 

  15. Fuchs D, Jamnig H, Heininger P, Klieber M, Schroecksnadel S, Fiegl M, et al. Decline of exhaled isoprene in lung cancer patients correlates with immune activation. J Breath Res. 2012;6:027101.

    Article  CAS  PubMed  Google Scholar 

  16. Pfefferkorn ER. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984;81:908–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim Biophys Acta. 1989;1012:140–7.

    Article  CAS  PubMed  Google Scholar 

  18. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.

    Article  CAS  PubMed  Google Scholar 

  19. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–77.

    Article  CAS  PubMed  Google Scholar 

  20. Trabanelli S, Ocadlikova D, Evangelisti C, Parisi S, Curti A. Induction of regulatory T Cells by dendritic cells through indoleamine 2,3-dioxygenase: a potent mechanism of acquired peripheral tolerance. Curr Med Chem. 2011;18:2234–9.

    Article  CAS  PubMed  Google Scholar 

  21. Widner B, Ledochowski M, Fuchs D. Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Curr Drug Metab. 2000;1:193–204.

    Article  CAS  PubMed  Google Scholar 

  22. Widner B, Laich A, Sperner-Unterweger B, Ledochowski M, Fuchs D. Neopterin production tryptophan degradation and mental depression: what is the link? Brain Behav Immun. 2002;16:590–5.

    Article  CAS  PubMed  Google Scholar 

  23. Capuron L, Dantzer R. Cytokines and depression: the need for a new paradigm. Brain Behav Immun. 2003;17 Suppl 1:S119–24.

    Article  CAS  PubMed  Google Scholar 

  24. Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol. 2013;169:1211–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Botwinick IC, Pursell L, Yu G, Cooper T, Mann JJ, Chabot JA. A biological basis for depression in pancreatic cancer. HPB (Oxford). 2014;16:740–3.

    Article  Google Scholar 

  26. Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation. 2014;11:151.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, et al. Interferon- alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54:906–14.

    Article  CAS  PubMed  Google Scholar 

  28. Capuron L, Schroecksnadel S, Féart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low grade immune activation in the elderly is associated with increased tryptophan catabolism and altered phenylalanine turnover: role in neuropsychiatric symptomatology. Biol Psychiatry. 2011;70:175–82.

    Article  CAS  PubMed  Google Scholar 

  29. Oxenkrug GF. Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann N Y Acad Sci. 2010;1199:1–14.

    Article  CAS  PubMed  Google Scholar 

  30. Capuron L, Geisler S, Kurz K, Leblhuber F, Sperner-Unterweger B, Fuchs D. Activated immune system and inflammation in healthy ageing: relevance for tryptophan and neopterin metabolism. Curr Pharm Des (in press).

    Google Scholar 

  31. Sublette ME, Galfalvy HC, Fuchs D, Lapidus M, Grunebaum MF, Oquendo MA, et al. Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun. 2011;25(6):1272–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. O'Connor JC, Lawson MA, André C, Briley EM, Szegedi SS, Lestage J, et al. Induction of IDO by Bacille Calmette-Guérin is responsible for development of murine depressive-like behavior. J Immunol. 2009;182:3202–12.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Myint AM. Kynurenines: from the perspective of major psychiatric disorders. FEBS J. 2012;279(8):1375–85.

    Article  CAS  PubMed  Google Scholar 

  34. McGee E, Shevlin M. Effect of humor on interpersonal attraction and mate selection. J Psychol. 2009;143:67–77.

    Article  PubMed  Google Scholar 

  35. Wirleitner B, Reider D, Ebner S, Böck G, Widner B, Jaeger M, et al. Monocyte-derived dendritic cells release neopterin. J Leukoc Biol. 2002;72:1148–53.

    CAS  PubMed  Google Scholar 

  36. Cano OD, Neurauter G, Fuchs D, Shearer GM, Boasso A. Differential effect of type I and type II interferons on neopterin production and amino acid metabolism in human astrocytes-derived cells. Neurosci Lett. 2008;438:22–5.

    Article  CAS  PubMed  Google Scholar 

  37. Schroecksnadel S, Sucher R, Kurz K, Fuchs D, Brandacher G. Influence of immunosuppressive agents on tryptophan degradation and neopterin production in human peripheral blood mononuclear cells. Transplant Immunol. 2011;25:119–23.

    Article  CAS  Google Scholar 

  38. Schroecksnadel K, Winkler C, Wirleitner B, Schennach H, Fuchs D. Aspirin down-regulates tryptophan degradation in stimulated human peripheral blood mononuclear cells in vitro. Clin Exp Immunol. 2005;140:41–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Neurauter G, Wirleitner B, Laich A, Schennach H, Weiss G, Fuchs D. Atorvastatin suppresses interferon-γ-induced neopterin formation and tryptophan degradation in human peripheral blood mononuclear cells and in monocytic cell lines. Clin Exp Immunol. 2003;131:264–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–89.

    Article  CAS  PubMed  Google Scholar 

  41. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10:2247–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Schobersberger W, Hoffmann G, Grote J, Wachter H, Fuchs D. Induction of inducible nitric oxide synthase expression by neopterin in vascular smooth muscle cells. FEBS Lett. 1995;377:461–4.

    Article  CAS  PubMed  Google Scholar 

  43. Jenny M, Klieber M, Zaknun D, Schroecksnadel S, Kurz K, Ledochowski M, et al. In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm Res. 2011;60:127–35.

    Article  CAS  PubMed  Google Scholar 

  44. Gostner J, Ciardi C, Becker K, Fuchs D, Sucher R. Immunoregulatory impact of food antioxidants. Curr Pharm Des. 2014;20:840–9.

    Article  CAS  PubMed  Google Scholar 

  45. Gostner JM, Schroecknsadel S, Jenny M, Klein A, Ueberall F, Schennach H, et al. Coffee extracts suppress tryptophan breakdown in mitogen-stimulated peripheral blood mononuclear cells. J Am Coll Nutr (in press).

    Google Scholar 

  46. Zaknun D, Schroecksnadel S, Kurz K, Fuchs D. Potential role of antioxidant food supplements, preservatives and colorants in the pathogenesis of allergy and asthma. Int Arch Allergy Immunol. 2012;157:113–24.

    Article  CAS  PubMed  Google Scholar 

  47. Winkler C, Schroecksnadel K, Schennach H, Fuchs D. Vitamin C and E suppress mitogen-stimulated peripheral blood mononuclear cells in vitro. Int Arch Allergy Immunol. 2007;142:127–32.

    Article  CAS  PubMed  Google Scholar 

  48. Tan PH, Sagoo P, Chan C, Yates JB, Campbell J, Beutelspacher SC, et al. Inhibition of NF-kappa B and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J Immunol. 2005;174:7633–44.

    Article  CAS  PubMed  Google Scholar 

  49. Murr C, Winklhofer-Roob BM, Schroecksnadel K, Maritschnegg M, Mangge H, Böhm BO, et al. Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis. 2009;202:543–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hulsken S, Märtin A, Mohajeri MH, Homberg JR. Food-derived serotonergic modulators: effects on mood and cognition. Nutr Res Rev. 2013;26:223–34.

    Article  CAS  PubMed  Google Scholar 

  51. Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568–78.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxidative Med Cell Longev. 2014;2014:313570.

    Article  Google Scholar 

  53. Sánchez-Villegas A, Martínez-González MA, Estruch R, Salas-Salvadó J, Corella D, Covas MI, et al. Mediterranean dietary pattern and depression: the PREDIMED randomized trial. BMC Med. 2013;11:208.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Jenny M, Santer E, Klein A, Ledochowski M, Schennach H, Ueberall F, et al. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. J Ethnopharmacol. 2009;207:75–82.

    CAS  Google Scholar 

  55. Gea A, Beunza JJ, Estruch R, Sánchez-Villegas A, Salas-Salvadó J, Buil-Cosiales P, et al. Alcohol intake, wine consumption and the development of depression: the PREDIMED study. BMC Med. 2013;11:192.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Gleissenthall GV, Geisler S, Malik P, Kemmler G, Benicke H, Fuchs D, et al. Tryptophan metabolism in post-withdrawal alcohol-dependent patients. Alcohol Alcohol. 2014;49:251–5.

    Article  CAS  PubMed  Google Scholar 

  57. Mougiakakos D, Jitschin R, Johansson CC, Okita R, Kiessling R, Le Blanc K. The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood. 2011;117:4826–35.

    Article  CAS  PubMed  Google Scholar 

  58. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets. 2010;11:1485–94.

    Article  CAS  PubMed  Google Scholar 

  59. Walter RB, Fuchs D, Weiss G, Walter TR, Reinhard WH. HMG-CoA reductase inhibitors are associated with decreased serum neopterin levels in stable coronary artery disease. Clin Chem Lab Med. 2003;41:1314–19.

    Article  CAS  PubMed  Google Scholar 

  60. Pedersen ER, Midttun Ø, Ueland PM, Schartum-Hansen H, Seifert R, Igland J, et al. Systemic markers of interferon-g-mediated immune activation and long-term prognosis in 2380 patients with stable coronary artery disease. Arterioscler Thromb Vasc Biol. 2011;31:698–704.

    Article  CAS  PubMed  Google Scholar 

  61. Fernstrom JD, Wurtman RJ. Brain serotonin content: increase following ingestion of carbohydrate diet. Science. 1971;174:1023–5.

    Article  CAS  PubMed  Google Scholar 

  62. Liverant GI, Sloan DM, Pizzagalli DA, Harte CB, Kamholz BW, Rosebrock LE, et al. Associations among smoking, anhedonia, and reward learning in depression. Behav Ther. 2014;45:651–63.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Komiyama M, Wada H, Ura S, Yamakage H, Satoh-Asahara N, Shimatsu A, et al. Analysis of factors that determine weight gain during smoking cessation therapy. PLoS One. 2013;8(8), e72010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Farr OM, Tsoukas MA, Mantzoros CS. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism. 2014, pii: S0026-0495(14)00199-1.

    Google Scholar 

  65. Ciardi C, Jenny M, Tschoner A, Überall F, Patsch J, Pedrini M, et al. Food additives sodium sulfite, sodium benzoate and curcumin inhibit leptin release in lipopolysaccharide-treated murine adipocytes in vitro. Br J Nutr. 2012;107:826–33.

    Article  CAS  PubMed  Google Scholar 

  66. Aggarwal BB, Shishodia S. Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci. 2004;1030:434–41.

    Article  CAS  PubMed  Google Scholar 

  67. Mangge H, Summers KL, Meinitzer A, Zelzer S, Almer G, Prassl R, et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome. Obesity (Silver Spring). 2014;22:195–201.

    Article  CAS  Google Scholar 

  68. Lee H, Ohno M, Ohta S, Mikami T. Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice. PLoS One. 2013;8, e66996.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Melancon MO, Lorrain D, Dionne IJ. Changes in markers of brain serotonin activity in response to chronic exercise in senior men. Appl Physiol Nutr Metab. 2014;23:1–7.

    Google Scholar 

  70. Strasser B, Berger K, Fuchs D. Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults. Eur J Nutr (in press).

    Google Scholar 

  71. Steinert RE, Luscombe-Marsh ND, Little TJ, Standfield S, Otto B, Horowitz M, et al. Effects of intraduodenal infusion of l-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J Clin Endocrinol Metab. 2014;99:3275–84.

    Article  CAS  PubMed  Google Scholar 

  72. Neurauter G, Schröcksnadel K, Scholl-Bürgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, et al. Chronic immune stimulation correlates with reduced phenylalanine turn-over. Curr Drug Metab. 2008;9:622–7.

    Article  CAS  PubMed  Google Scholar 

  73. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37:137–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Fuchs D, Murr C, Reibnegger G, Weiss G, Werner ER, Werner-Felmayer G, et al. Nitric oxide synthase and antimicrobial armature of human macrophages. J Infect Dis. 1994;169:224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

There are no conflicts of interest and no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gostner, J.M., Becker, K., Sperner-Unterweger, B., Überall, F., Fuchs, D., Strasser, B. (2015). Role of Tryptophan Metabolism in Mood, Behavior, and Cognition. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_6

Download citation

Publish with us

Policies and ethics