Skip to main content
  • 1271 Accesses

Abstract

The kynurenine pathway for tryptophan catabolism is responsible for the production of the essential cofactor NAD+, but many of the pathway catabolites play roles in many different disease states. The involvement of the kynurenine pathway enzymes and catabolites in cancer occurs via both immune and nonimmune mechanisms. In this chapter, the consequences of the immune response to developing tumors will be summarized, and the role played by indoleamine 2,3-dioxygenase in enabling tumor immune escape via tryptophan depletion will be outlined. In addition, the role played by other enzymes, such as tryptophan 2,3-dioxygenase—which modulates the immune response by producing kynurenine—is described. Further to this, the involvement of downstream enzymes and catabolites of the pathway in tumor development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

KP:

Kynurenine pathway

IDO:

Indoleamine 2,3-dioxygenase

IDO2:

Indoleamine 2,3-dioxygenase-2

TDO:

Tryptophan 2,3-dioxygenase

NMDA:

N-methyl-D-aspartate

TRP:

L-tryptophan

KYN:

Kynurenine

KYNA:

Kynurenic acid

3-HK:

3-Hydroxykynurenine

AA:

Anthranilic acid

3-HA:

3-Hydroxyanthranilic acid

PIC:

Picolinic acid

QUIN:

Quinolinic acid

NAD+ :

Nicotinamide adenine dinucleotide

IFN:

Interferon

IL:

Interleukin

TNF:

Tumor necrosis factor

APC:

Antigen-presenting cell

DC:

Dendritic cell

AHR:

Aryl hydrocarbon receptor

ACMSD:

Aminocarboxymuconate semialdehyde decarboxylase

1-MT:

1-Methyl-tryptophan

LPS:

Lipopolysaccharide

References

  1. Wolf H. The effect of hormones and vitamin B6 on urinary excretion of the metabolites of the kynurenine pathway. Scand J Clin Lab Invest. 1974;136:1–186.

    CAS  Google Scholar 

  2. Vécsei L, Szalárdy L, Fülöp F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12:64–82.

    Article  PubMed  Google Scholar 

  3. Burnet M. Cancer: a biological approach. Br Med J. 1957;1:841–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  CAS  PubMed  Google Scholar 

  5. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–48.

    Article  CAS  PubMed  Google Scholar 

  6. Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev. 2002;13:143–54.

    Article  CAS  PubMed  Google Scholar 

  7. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  CAS  PubMed  Google Scholar 

  8. Wrenshall LE, Stevens RB, Cerra FB, Platt JL. Modulation of macrophage and B cell function by glycosaminoglycans. J Leukoc Biol. 1999;66:391–400.

    CAS  PubMed  Google Scholar 

  9. Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell Jr JE. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon α and interferon γ. Proc Natl Acad Sci USA. 1996;93:7673–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Luster AD, Leder P. IP-10, a –C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med. 1993;178:1057–65.

    Article  CAS  PubMed  Google Scholar 

  11. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, et al. Tumor cell responses to IFN-γ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity. 1998;9:25–34.

    Article  CAS  PubMed  Google Scholar 

  12. Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000;12:677–86.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science. 1997;278:1630–2.

    Article  CAS  PubMed  Google Scholar 

  14. Schreiber RD, Pace JL, Russell SW, Altman A, Katz DH. Macrophage-activating factor produced by a T cell hybridoma: physicochemical and biosynthetic resemblance to γ-interferon. J Immunol. 1983;131(2):826–32.

    CAS  PubMed  Google Scholar 

  15. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–89.

    Article  CAS  PubMed  Google Scholar 

  16. MacMicking J, Xie Q, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.

    Article  CAS  PubMed  Google Scholar 

  17. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med. 2001;7(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  18. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon γ-dependent natural killer cell protection from tumor metastasis. J Exp Med. 2001;193(6):661–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hayakawa Y, Kelly JM, Westwood JA, Darcy PK, Diefenbach A, Raulet D, Smyth MJ. Cutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin. J Immunol. 2002;169(10):5377–81.

    Article  CAS  PubMed  Google Scholar 

  20. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol. 2000;18:593–620.

    Article  CAS  PubMed  Google Scholar 

  21. Huang AYC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science. 1994;264:961–5.

    Article  CAS  PubMed  Google Scholar 

  22. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998;392:86–9.

    Article  CAS  PubMed  Google Scholar 

  23. Schoenberger SP, Toes REM, van der Voort EIH, Offringa R, Melief CJM. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393:480–3.

    Article  CAS  PubMed  Google Scholar 

  24. Yu P, Spiotto MT, Lee Y, Schreiber H, Fu Y-X. Complementary role of CD4+ T cells and secondary lymphoid tissues for cross-presentation of tumor antigen to CD8+ T cells. J Exp Med. 2003;197(8):985–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32.

    Article  CAS  PubMed  Google Scholar 

  26. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol. 2002;3(11):999–1005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases. Chem Rev. 1996;96(7):2841–87.

    Article  CAS  PubMed  Google Scholar 

  28. Ishiguro I, Naito J, Saito K, Nagamura Y. Skin L-tryptophan-2,3-dioxygenase and rat hair growth. FEBS Lett. 1993;329(1):178–82.

    Article  CAS  PubMed  Google Scholar 

  29. Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004;15(3):618–29.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki S, Toné S, Takikawa O, Kubo T, Kohno I, Minatogawa Y. Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem J. 2001;355:425–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fatokun AA, Hunt NH, Ball HJ. Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids. 2013;45:1319–29.

    Article  CAS  PubMed  Google Scholar 

  32. Löb S, Königsrainer A, Zieker D, Brücher BLDM, Rammensee H-G, Opelz G, Terness P. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother. 2009;58:153–7.

    Article  PubMed  Google Scholar 

  33. Witkiewicz AK, Costantino CL, Metz R, Muller AJ, Prendergast GC, Yeo CJ, Brody JR. Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J Am Coll Surg. 2009;208(5):781–9.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Taylor M, Feng G. Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5:2516–22.

    CAS  PubMed  Google Scholar 

  35. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas SM, Garrity LF, Brandt CR, Schobert CS, Feng G-S, Taylor MW, et al. IFN-γ-mediated antimicrobial response. J Immunol. 1993;150(12):5529–34.

    CAS  PubMed  Google Scholar 

  37. Fujigaki S, Saito K, Takemura M, Maekawa N, Yamada Y, Wada H, Seishima M. L-Tryptophan–L-kynurenine pathway metabolism accelerated by Toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase. Infect Immun. 2002;70(2):779–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hansen AM, Ball HJ, Mitchell AJ, Miu J, Takikawa O, Hunt NH. Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int J Parasitol. 2004;34:1309–19.

    Article  CAS  PubMed  Google Scholar 

  39. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–21.

    Article  CAS  PubMed  Google Scholar 

  40. Boyland E, Williams DC. The estimation of tryptophan metabolites in the urine of patients with cancer of the bladder. Process Biochem. 1955;60.

    Google Scholar 

  41. Ambanelli U, Rubino A. Some aspects of tryptophan-nicotinic acid chain in Hodgkin’s disease. Relative roles of tryptophan loading and vitamin supplementation on urinary excretion of metabolites. Haematol Lat. 1962;5:49–73.

    CAS  PubMed  Google Scholar 

  42. Ivanova VD. Disorders of tryptophan metabolism in leukaemia. Acta Unio Int Contra Cancrum. 1964;20:1085–6.

    CAS  PubMed  Google Scholar 

  43. Rose DP. Tryptophan metabolism in carcinoma of the breast. Lancet. 1967;1:239–41.

    Article  CAS  PubMed  Google Scholar 

  44. Wolf H, Madsen PO, Price JM. Studies on the metabolism of tryptophan in patients with benign prostatic hypertrophy or cancer of the prostate. J Urol. 1968;100:537–43.

    CAS  PubMed  Google Scholar 

  45. Moretti S, Menicali E, Voce P, Morelli S, Cantarelli S, Sponziello M, et al. Indoleamine 2,3-dioxygenase 1 (IDO1) is up-regulated in thyroid carcinoma and drives the development of an immunosuppressant tumor microenvironment. J Clin Endocrinol Metab. 2014;99:E832–40.

    Article  CAS  PubMed  Google Scholar 

  46. Cavia-Saiz M, Muniz Rodriguez P, Llorente Alaya B, García-González M, Coma-del Corral MJ, García GC. The role of plasma IDO activity as a diagnostic marker of patients with colorectal cancer. Mol Biol Rep. 2014;41:2275–9.

    Article  CAS  PubMed  Google Scholar 

  47. Pasikanti KK, Esuvaranathan K, Hong Y, Ho PC, Mahendran R, Mani LRN, et al. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J Proteome Res. 2013;12:3865–73.

    Article  CAS  PubMed  Google Scholar 

  48. Pertl MM, Hevey D, Boyle NT, Hughes MM, Collier S, O-Dwyer A-M, Harkin A, Kennedy MJ, Connor TJ. C-reactive protein predicts fatigue independently of depression in breast cancer patients prior to chemotherapy. Brain Behav Immun. 2013;34:108–19.

    Article  CAS  PubMed  Google Scholar 

  49. Wichers M, Maes M. The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. Int J Neuropsychopharmacol. 2002;5:375–88.

    Article  CAS  PubMed  Google Scholar 

  50. Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, et al. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology. 2012;37:939–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Liu P, Xie BL, Cai SH, He YW, Zhang G, Yi YM, et al. Expression of indoleamine 2,3-dioxygenase in nasopharyngeal carcinoma impairs the cytolytic function of peripheral blood lymphocytes. BMC Cancer. 2009;9:2407–16.

    Google Scholar 

  52. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006;12(4):1144–51.

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, Saito S. Expression of indoleamine 2,3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci. 2007;98(6):874–81.

    Article  CAS  PubMed  Google Scholar 

  54. Zeng J, Cai S, Yi Y, He Y, Wang Z, Jiang G, et al. Prevention of spontaneous tumor development in a ret transgenic mouse model by ret peptide vaccination with indoleamine 2,3-dioxygenase inhibitor 1-methyl tryptophan. Cancer Res. 2009;69(9):3963–70.

    Article  CAS  PubMed  Google Scholar 

  55. Ogawa K, Hara T, Shimizu M, Nagano J, Ohno T, Hoshi M, et al. (−)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol Lett. 2012;4:546–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. He YW, Wang HS, Zeng J, Fang X, Chen HY, Du J, Yang X. Skin L-tryptophan-2,3-dioxygenase and rat hair growth. Life Sci. 2013;93:509–15.

    Article  CAS  PubMed  Google Scholar 

  57. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 2004;114(2):280–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol. 2006;177(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  59. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined affects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naïve T cells. J Immunol. 2006;176(11):6752–61.

    Article  CAS  PubMed  Google Scholar 

  60. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.

    Article  CAS  PubMed  Google Scholar 

  61. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell. 2000;6:269–79.

    Article  CAS  PubMed  Google Scholar 

  62. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6:1099–108.

    Article  CAS  PubMed  Google Scholar 

  63. Ball HJ, Sanchez-Perez A, Weiser S, Austin CJD, Astelbauer F, Miu J, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396:203–13.

    Article  CAS  PubMed  Google Scholar 

  64. Metz R, DuHadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007;67(15):7082–7.

    Article  CAS  PubMed  Google Scholar 

  65. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115(17):3520–30.

    Article  CAS  PubMed  Google Scholar 

  66. Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 2009;41(3):467–71.

    Article  CAS  PubMed  Google Scholar 

  67. Pantouris G, Serys M, Yuasa HJ, Ball HJ, Mowat CG. Human indoleamine 2,3-dioxygenase-2 has substrate specificity and inhibition characteristics distinct from those of indoleamine 2,3-dioxygenase-1. Amino Acids. 2014;46:2155–63.

    Article  CAS  PubMed  Google Scholar 

  68. Opitz CA, Wick W, Steinman L, Platten M. Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci. 2007;64:2542–63.

    Article  CAS  PubMed  Google Scholar 

  69. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72(21):5435–40.

    Article  CAS  PubMed  Google Scholar 

  70. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumor-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203.

    Article  CAS  PubMed  Google Scholar 

  71. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185(6):3190–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA. 2010;107(46):19961–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003;43:309–34.

    Article  CAS  PubMed  Google Scholar 

  74. Safe S, Lee S-O, Jin U-H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci. 2013;135(1):1–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA. 2012;109(7):2497–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196:459–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Leuthauser SW, Oberley LW, Oberley TD. Antitumor activity of picolinic acid in CBA/J mice. J Natl Cancer Inst. 1982;68:123–6.

    CAS  PubMed  Google Scholar 

  78. Melillo G, Cox GW, Biragyn A, Sheffler LA, Varesio L. Regulation of nitric oxide synthase mRNA expression by interferon-gamma and picolinic acid. J Biol Chem. 1994;269:8128–33.

    CAS  PubMed  Google Scholar 

  79. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, et al. Characterization of the kynurenine pathway in human neurons. J Neurosci. 2007;27:12884–92.

    Article  CAS  PubMed  Google Scholar 

  80. Adams S, Braidy N, Bessede A, Brew BJ, Grant R, Teo C, Guillemin GJ. The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 2012;72(22):5649–57.

    Article  CAS  PubMed  Google Scholar 

  81. Ikeda M, Tsuji H, Nakamura S, Ichiyama A, Nishizuk Y, Hayaishi O. Studies on biosynthesis of nicotinamide adenine dinucleotide. 2. A role of picolinic carboxylase in biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J Biol Chem. 1965;240:1395–401.

    CAS  PubMed  Google Scholar 

  82. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74.

    Article  CAS  PubMed  Google Scholar 

  83. Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 2007;67(2):792–801.

    Article  CAS  PubMed  Google Scholar 

  84. Löb S, Königsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine 2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9:445–52.

    Article  PubMed  Google Scholar 

  85. Metz R, Rust S, Duadaway JB, Mautino MR, Munn DH, Vahanian NN, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR. A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1(9):1460–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosure

The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Mowat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mowat, C.G. (2015). Role of Kynurenine Pathway in Cancer Biology. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_21

Download citation

Publish with us

Policies and ethics