Lapin IP. Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J Neural Transm. 1978;42(1):37–43.
CAS
CrossRef
PubMed
Google Scholar
Stone TW, Perkins MN. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol. 1981;72(4):411–2.
CAS
CrossRef
PubMed
Google Scholar
Rios C, Santamaria A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res. 1991;16(10):1139–43.
CAS
CrossRef
PubMed
Google Scholar
Santamaria A, Jimenez-Capdeville ME, Camacho A, Rodriguez-Martinez E, Flores A, Galvan-Arzate S. In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum. Neuroreport. 2001;12(12):2693–6.
CAS
CrossRef
PubMed
Google Scholar
Rodriguez-Martinez E, Camacho A, Maldonado PD, Pedraza-Chaverri J, Santamaria D, Galvan-Arzate S, et al. Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res. 2000;858(2):436–9.
CAS
CrossRef
PubMed
Google Scholar
Vezzani A, Stasi MA, Wu HQ, Castiglioni M, Weckermann B, Samanin R. Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability. Exp Neurol. 1989;106(1):90–8.
CAS
CrossRef
PubMed
Google Scholar
Nakano K, Takahashi S, Mizobuchi M, Kuroda T, Masuda K, Kitoh J. High levels of quinolinic acid in brain of epilepsy-prone E1 mice. Brain Res. 1993;619(1-2):195–8.
CAS
CrossRef
PubMed
Google Scholar
Eastman CL, Urbanska E, Love A, Kristensson K, Schwarcz R. Increased brain quinolinic acid production in mice infected with a hamster neurotropic measles virus. Exp Neurol. 1994;125(1):119–24.
CAS
CrossRef
PubMed
Google Scholar
Lehrmann E, Guidetti P, Love A, Williamson J, Bertram EH, Schwarcz R. Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice. Epilepsia. 2008;49 Suppl 2:13–23.
CrossRef
PubMed
Google Scholar
Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982;247(1):184–7.
CAS
CrossRef
PubMed
Google Scholar
Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989;52(4):1319–28.
CAS
CrossRef
PubMed
Google Scholar
Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21(19):7463–73.
CAS
PubMed
Google Scholar
Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, et al. Kynurenic acid, by targeting alpha7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci. 2013;37(9):1470–7.
CrossRef
PubMed
Google Scholar
Wu HQ, Pereira EF, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci. 2010;40(1–2):204–10.
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021–8.
CAS
CrossRef
PubMed
Google Scholar
DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010;115(1):89–97.
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.
CAS
CrossRef
PubMed
Google Scholar
Guo J, Williams DJ, Puhl 3rd HL, Ikeda SR. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Therap. 2008;324(1):342–51.
CAS
CrossRef
Google Scholar
Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA. 2010;107(46):19961–6.
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Thompson JL, Holmes GL, Taylor GW, Feldman DR. Effects of kynurenic acid on amygdaloid kindling in the rat. Epilepsy Res. 1988;2(5):302–8.
CAS
CrossRef
PubMed
Google Scholar
Szyndler J, Maciejak P, Turzynska D, Sobolewska A, Walkowiak J, Plaznik A. The effects of electrical hippocampal kindling of seizures on amino acids and kynurenic acid concentrations in brain structures. J Neural Transm. 2012;119(2):141–9.
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Wu HQ, Monno A, Schwarcz R, Vezzani A. Electrical kindling is associated with a lasting increase in the extracellular levels of kynurenic acid in the rat hippocampus. Neurosci Lett. 1995;198(2):91–4.
CAS
CrossRef
PubMed
Google Scholar
Loscher W, Ebert U, Lehmann H. Kindling induces a lasting, regionally selective increase of kynurenic acid in the nucleus accumbens. Brain Res. 1996;725(2):252–6.
CAS
CrossRef
PubMed
Google Scholar
Nemeth H, Robotka H, Kis Z, Rozsa E, Janaky T, Somlai C, et al. Kynurenine administered together with probenecid markedly inhibits pentylenetetrazol-induced seizures. An electrophysiological and behavioural study. Neuropharmacology. 2004;47(6):916–25.
CAS
CrossRef
PubMed
Google Scholar
Wu HQ, Schwarcz R. Seizure activity causes elevation of endogenous extracellular kynurenic acid in the rat brain. Brain Res Bull. 1996;39(3):155–62.
CAS
CrossRef
PubMed
Google Scholar
Maciejak P, Szyndler J, Turzynska D, Sobolewska A, Taracha E, Skorzewska A, et al. Time course of changes in the concentration of kynurenic acid in the brain of pentylenetetrazol-kindled rats. Brain Res Bull. 2009;78(6):299–305.
CAS
CrossRef
PubMed
Google Scholar
Scharfman HE, Hodgkins PS, Lee SC, Schwarcz R. Quantitative differences in the effects of de novo produced and exogenous kynurenic acid in rat brain slices. Neurosci Lett. 1999;274(2):111–4.
CAS
CrossRef
PubMed
Google Scholar
Rozsa E, Robotka H, Nagy D, Farkas T, Sas K, Vecsei L, et al. The pentylenetetrazole-induced activity in the hippocampus can be inhibited by the conversion of L-kynurenine to kynurenic acid: an in vitro study. Brain Res Bull. 2008;76(5):474–9.
CAS
CrossRef
PubMed
Google Scholar
Carpenedo R, Chiarugi A, Russi P, Lombardi G, Carla V, Pellicciari R, et al. Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience. 1994;61(2):237–43.
CAS
CrossRef
PubMed
Google Scholar
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3):174–84.
CAS
CrossRef
PubMed
Google Scholar
Guillemin GJ, Smith DG, Kerr SJ, Smythe GA, Kapoor V, Armati PJ, et al. Characterisation of kynurenine pathway metabolism in human astrocytes and implications in neuropathogenesis. Redox Rep. 2000;5(2-3):108–11.
CAS
CrossRef
PubMed
Google Scholar
Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, et al. IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interferon Cytokine Res. 2001;21(12):1097–101.
CAS
CrossRef
PubMed
Google Scholar
Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46(11):1724–43.
CAS
CrossRef
PubMed
Google Scholar
Vezzani A. Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr. 2014;14(1 Suppl):3–7.
PubMed Central
CrossRef
PubMed
Google Scholar
Mandi Y, Vecsei L. The kynurenine system and immunoregulation. J Neural Transm. 2012;119(2):197–209.
CAS
CrossRef
PubMed
Google Scholar
Young SN, Joseph MH, Gauthier S. Studies on kynurenine in human cerebrospinal fluid: lowered levels in epilepsy. J Neural Transm. 1983;58(3-4):193–204.
CAS
CrossRef
PubMed
Google Scholar
Feldblum S, Rougier A, Loiseau H, Loiseau P, Cohadon F, Morselli PL, et al. Quinolinic-phosphoribosyl transferase activity is decreased in epileptic human brain tissue. Epilepsia. 1988;29(5):523–9.
CAS
CrossRef
PubMed
Google Scholar
Heyes MP, Wyler AR, Devinsky O, Yergey JA, Markey SP, Nadi NS. Quinolinic acid concentrations in brain and cerebrospinal fluid of patients with intractable complex partial seizures. Epilepsia. 1990;31(2):172–7.
CAS
CrossRef
PubMed
Google Scholar
Marti-Masso JF, Bergareche A, Makarov V, Ruiz-Martinez J, Gorostidi A, Lopez de Munain A, et al. The ACMSD gene, involved in tryptophan metabolism, is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism. J Mol Med. 2013;91(12):1399–406.
CAS
CrossRef
PubMed
Google Scholar
Chugani DC, Chugani HT, Muzik O, Shah JR, Shah AK, Canady A, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858–66.
CAS
CrossRef
PubMed
Google Scholar
Batista C, Chugani, D. C., Luat, A. et al. Differential expression of the kynurenine pathway enzymes in epileptogenic tubers in tuberous sclerosis complex (TSC). Presented at 64th Annual Meeting of the American Epilepsy Society; 3–7 December 2010; San Antonio, TX, USA.
Google Scholar
Rubi S, Costes N, Heckemann RA, Bouvard S, Hammers A, Marti Fuster B, et al. Positron emission tomography with alpha-[11C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia. 2013;54(12):2143–50.
CAS
CrossRef
PubMed
Google Scholar
Fedi M, Reutens DC, Andermann F, Okazawa H, Boling W, White C, et al. alpha-[11C]-Methyl-L-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res. 2003;52(3):203–13.
CrossRef
PubMed
Google Scholar
Juhasz C, Chugani DC, Muzik O, Shah A, Asano E, Mangner TJ, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology. 2003;60(6):960–8.
CAS
CrossRef
PubMed
Google Scholar
Chugani DC. Alpha-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark Med. 2011;5(5):567–75.
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Fedi M, Reutens D, Okazawa H, Andermann F, Boling W, Dubeau F, et al. Localizing value of alpha-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology. 2001;57(9):1629–36.
CAS
CrossRef
PubMed
Google Scholar
Natsume J, Kumakura Y, Bernasconi N, Soucy JP, Nakai A, Rosa P, et al. Alpha-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy. Neurology. 2003;60(5):756–61.
CAS
CrossRef
PubMed
Google Scholar
Juhasz C, Chugani DC, Muzik O, Wu D, Sloan AE, Barger G, et al. In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab. 2006;26(3):345–57.
CAS
CrossRef
PubMed
Google Scholar
Natsume J, Bernasconi N, Aghakhani Y, Kumakura Y, Nishikawa M, Fedi M, et al. Alpha-[11C]methyl-L-tryptophan uptake in patients with periventricular nodular heterotopia and epilepsy. Epilepsia. 2008;49(5):826–31.
CrossRef
PubMed
Google Scholar
Alkonyi B, Mittal S, Zitron I, Chugani DC, Kupsky WJ, Muzik O, et al. Increased tryptophan transport in epileptogenic dysembryoplastic neuroepithelial tumors. J Neuro-Oncol. 2012;107(2):365–72.
CAS
CrossRef
Google Scholar
Juhasz C, Buth A, Chugani DC, Kupsky WJ, Chugani HT, Shah AK, et al. Successful surgical treatment of an inflammatory lesion associated with new-onset refractory status epilepticus. Neurosurg Focus. 2013;34(6), E5.
CrossRef
PubMed
Google Scholar
Chiarugi A, Carpenedo R, Molina MT, Mattoli L, Pellicciari R, Moroni F. Comparison of the neurochemical and behavioral effects resulting from the inhibition of kynurenine hydroxylase and/or kynureninase. J Neurochem. 1995;65(3):1176–83.
CAS
CrossRef
PubMed
Google Scholar
Wu HQ, Lee SC, Scharfman HE, Schwarcz R. L-4-chlorokynurenine attenuates kainate-induced seizures and lesions in the rat. Exp Neurol. 2002;177(1):222–32.
CAS
CrossRef
PubMed
Google Scholar
Zhang DX, Williamson JM, Wu HQ, Schwarcz R, Bertram EH. In situ-produced 7-chlorokynurenate has different effects on evoked responses in rats with limbic epilepsy in comparison to naive controls. Epilepsia. 2005;46(11):1708–15.
CAS
CrossRef
PubMed
Google Scholar
Wu HQ, Rassoulpour A, Goodman JH, Scharfman HE, Bertram EH, Schwarcz R. Kynurenate and 7-chlorokynurenate formation in chronically epileptic rats. Epilepsia. 2005;46(7):1010–6.
CAS
CrossRef
PubMed
Google Scholar