Skip to main content

Information Logistics Solutions to Cope with Big Data Challenges in AAL and Telemedicine

Part of the Advanced Technologies and Societal Change book series (ATSC)

Abstract

The extensive usage of information and communication technologies (ICT) within the area of Ambient Assisted Living (AAL) and telemedicine results in a continuously increasing amount of heterogeneous data. Data, on the one hand, isn’t tantamount to information on the other. Data has to be transformed into demand fulfilling information to cope with one the biggest problems in information science: data and information overload. The objective of this paper is to introduce technologies like Complex Event Processing (CEP) as well as Data Mining (DM) and Machine Learning (ML) to develop approaches to cope with the problem of information overload in health care according to the principles of Information Logistics (ILOG). We’ll present a solutions called Telemedical ILOG Event Engine (TiEE).

Keywords

  • Vital Sign
  • Event Processing
  • Information Overload
  • Information Demand
  • Ambient Assist Live

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11866-6_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-11866-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wyatt, J.: Information for clinicians: use and sources of medical knowledge. Lancet 338, 1368–1373 (1991)

    CrossRef  Google Scholar 

  2. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Heal. Inf. Sci. Syst. 2, 3 (2014)

    Google Scholar 

  3. Feldmann, B., Martin, E.M., Skotnes, T.: Big Data in Healthcare—Hype and Hope. Technical Report, Dr. Bonnie 360º (2012)

    Google Scholar 

  4. Bundesverband Telekommunikation und neue Medien e. V.: Big Data im Praxiseinsatz—Szenarien, Beispiele, Effekte (2012)

    Google Scholar 

  5. Frost & Sullivan: Drowning in Big Data? Reducing Information Technology Complexities and Costs For Healthcare Organizations. Technical Report, Frost & Sullivan (2012)

    Google Scholar 

  6. Hunt, R.E., Newman, R.G.: Medical knowledge overload: a disturbing trend for physicians. Health. Care Manag. Rev. 22, 70–75 (1997)

    Google Scholar 

  7. Broy, M.: Cyber Physical Systems. Springer, Berlin (2010)

    Google Scholar 

  8. Krogh, B.H., Lee, E., Lee, I., Mok, A.: Cyber-Physical Systems. Springer, Berlin (2008)

    Google Scholar 

  9. Maviglia, S.M., Yoon, C.S., Bates, D.W., Kuperman, G.: KnowledgeLink: impact of context-sensitive information retrieval on clinicians’ information needs. J. Am. Med. Inf. Assoc. 13, 67–73 (2006)

    CrossRef  Google Scholar 

  10. Hall, A., Walton, G.: Information overload within the health care system: a literature review. Health Inform. Libr J. 21, 102–108 (2004)

    CrossRef  Google Scholar 

  11. Wilson, T.D.: Information overload: implications for healthcare services. Health Inf. J. 7, 112–117 (2001)

    CrossRef  Google Scholar 

  12. Line, M.: Draft definitions: information and library needs, wants, demands and uses. Aslib Proc. 26, 87 (1974)

    CrossRef  Google Scholar 

  13. Vuori, V.: Methods of defining business information needs. In: Maula, M., Hannula, M., Seppoe, M., Tommila, J. (eds.) Frontiers of e-Business Research ICEB + eBRF 2006—Conference Proceedings. pp. 311–319 (2006)

    Google Scholar 

  14. Deiters, W., Löffeler, T., Pfennigschmidt, S.: The information logistics approach toward user demand-driven information supply. Cross-media service delivery: Based on papers presented at the Conference on Cross-Media Service Delivery—CMSD-2003. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  15. Willems, A., Willems, J., Hajdasinski, A.: Information Logistics Research Report—Frameworks in Healthcare Industry. Technical report, The Nyenrode Research and Innovation Institute (2009)

    Google Scholar 

  16. Winter, R., Schmaltz, M., Dinter, B., Bucher, T., Klesse, M., Lahrmann, G., Töpfer, J., Wegener, H.: Integrierte Informationslogistik. Springer, Berlin (2008)

    Google Scholar 

  17. Meister, S., Koch, O.: Using complex event processing and context for intelligent information filtering and supply. In: Schilling, K., Leutert, F. (eds.) 1st IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control CESCIT 2012 (2012)

    Google Scholar 

  18. Haftor, D.M., Kajtazi, M., Mirijamdotter, A.: Review of Information Logistics Research Publications. In: Abramowicz, W., Maciaszek, L., and Węcel, K. (eds.) Business Information Systems Workshops, pp. 244–255. Springer, Berlin (2011)

    Google Scholar 

  19. Bates, J., Bacon, J., Moody, K., Spiteri, M.: Using events for the scalable federation of heterogeneous components. In: Proceedings of the 8th ACM SIGOPS European Workshop on Support for Composing Distributed Applications, pp. 58–65. ACM Press, New York (1998)

    Google Scholar 

  20. Chandy, K.M., Charpentier, M., Capponi, A.: Towards a theory of events. In: Proceedings of the 2007 Inaugural International Conference on Distributed Event-based Systems, pp. 180–187. ACM Press, New York (2007)

    Google Scholar 

  21. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley, Boston (2002)

    Google Scholar 

  22. Chandy, M.K., Etzion, O., von Ammon, R.: 10201 Executive summary and manifesto—event processing. In: Chandy, K.M., Etzion, O., von Ammon, R. (eds.) Event Processing. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2011)

    Google Scholar 

  23. Meister, S., Schafer, S., Stahlmann, V.: TiEE—the telemedical ILOG event engine: Optimization of information supply in telemedicine. In: 6th International Workshop on Information Logistics, Knowledge Supply and Ontologies in Information Systems 2013, pp. 23–34 (2013)

    Google Scholar 

  24. Meister, S.: Usage of CEP and HL7 to solve information logistics problems in telemedicine. In: 4th International Workshop on Information Logistics and Knowledge Supply for Viable Enterprises (ILOG 2011) (2011)

    Google Scholar 

  25. Meister, S.: Telemedical events: Intelligent delivery of telemedical values using CEP and HL7. In: Niedrite, L., Strazdina, R., Wangler, B. (eds.) BIR Workshops. Springer, Berlin (2012)

    Google Scholar 

  26. Meister, S., Stahlmann, V.: Telemedical ILOG listeners: Information logistics processing of telemedical values using CEP and HL7. In: Wichert, R. Eberhardt, B. (eds.) Ambient Assisted Living—Advanced Technologies and Societal Change. Springer, Berlin (2012)

    Google Scholar 

  27. Society for Medical Decision Making: Proposal for Clinical Algorithm Standards: Society for Medical Decision Making Committee on Standardization of Clinical Algorithms. Med. Decis. Mak. 12, 149–154 (1992)

    CrossRef  Google Scholar 

  28. Charbonnier, S.: On-Line Extraction of Successive Temporal Sequences from ICU High-Frequency Data for Decision Support Information, pp. 1–10. AIME, Protaras (2003)

    Google Scholar 

  29. Haimowitz, I.: Knowledge-Based Trend Detection and Diagnosis. Technical Report, Massachusetts Institute of Technology (1994)

    Google Scholar 

  30. Meister, S., Stahlmann, V., Schafer, S.: Fitpit-Fitness Cockpit: Information System to Optimize Training Schedules in Rehabilitation. ECIS 2013 Proceedings (2013)

    Google Scholar 

  31. Liu, D., Görges, M., Jenkins, S.A.: University of Queensland vital signs dataset: development of an accessible repository of anesthesia patient monitoring data for research. Anesth. Analg. 114, 584–589 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Meister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meister, S., Deiters, W. (2015). Information Logistics Solutions to Cope with Big Data Challenges in AAL and Telemedicine. In: Wichert, R., Klausing, H. (eds) Ambient Assisted Living. Advanced Technologies and Societal Change. Springer, Cham. https://doi.org/10.1007/978-3-319-11866-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11866-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11865-9

  • Online ISBN: 978-3-319-11866-6

  • eBook Packages: EngineeringEngineering (R0)