Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51(5), 4282 (1995)
CrossRef
Google Scholar
Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: CVPR (2007)
Google Scholar
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)
Google Scholar
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.J.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV (2009)
Google Scholar
Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: CVPR (2010)
Google Scholar
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)
Google Scholar
Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR (2011)
Google Scholar
Cui, X., Liu, Q., Gao, M., Metaxas, D.: Abnormal detection using interaction energy potentials. In: CVPR (2011)
Google Scholar
Mehran, R., Moore, B.E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Kratz, L., Nishino, K.: Going with the flow: Pedestrian efficiency in crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 558–572. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Zhou, B., Tang, X., Wang, X.: Measuring crowd collectiveness. In: CVPR (2013)
Google Scholar
Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: CVPR (2010)
Google Scholar
Solmaz, B., Moore, B., Shah, M.: Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE TPAMI 34(10), 2064–2070 (2012)
CrossRef
Google Scholar
Hospedales, T., Gong, S., Xiang, T.: Video behaviour mining using a dynamic topic model. International Journal of Computer Vision 98(3), 303–323 (2012)
CrossRef
MATH
MathSciNet
Google Scholar
Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: ICCV (2009)
Google Scholar
Lin, D., Grimson, E., Fisher, J.: Learning visual flows: A lie algebraic approach. In: CVPR (2009)
Google Scholar
Kim, J., Grauman, K.: Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: CVPR (2009)
Google Scholar
Andrade, E., Blunsden, S., Fisher, R.: Hidden markov models for optical flow analysis in crowds. In: ICPR (2006)
Google Scholar
Zhao, X., Gong, D., Medioni, G.: Tracking using motion patterns for very crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 315–328. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Zen, G., Ricci, E.: Earth mover’s prototypes: A convex learning approach for discovering activity patterns in dynamic scenes. In: CVPR (2011)
Google Scholar
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR (2011)
Google Scholar
Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: ICCV (2013)
Google Scholar
Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)
Google Scholar
Zen, G., Ricci, E., Sebe, N.: Exploiting sparse representations for robust analysis of noisy complex video scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 199–213. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Sweeny, T.D., Haroz, S., Whitney, D.: Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance 39(2), 329 (2013)
Google Scholar
Crouzet, S.M., Serre, T.: What are the visual features underlying rapid object recognition? Frontiers in Psychology 2 (2011)
Google Scholar
Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4(3), 179–192 (2003)
CrossRef
Google Scholar
Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV (2007)
Google Scholar
Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Zhang, Y., Qin, L., Yao, H., Huang, Q.: Abnormal crowd behavior detection based on social attribute-aware force model. In: ICIP (2012)
Google Scholar
Zhang, Y., Qin, L., Yao, H., Xu, P., Huang, Q.: Beyond particle flow: Bag of trajectory graphs for dense crowd event recognition. In: ICIP (2013)
Google Scholar
Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. IEEE TIP (2011)
Google Scholar
Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: NIPS (2006)
Google Scholar
Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: CVPR (2010)
Google Scholar
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
CrossRef
Google Scholar