Learning Sparse Prototypes for Crowd Perception via Ensemble Coding Mechanisms

  • Yanhao Zhang
  • Shengping Zhang
  • Qingming Huang
  • Thomas Serre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8749)


Recent work in cognitive psychology suggests that crowd perception may be based on pre-attentive ensemble coding mechanisms consistent with feedforward hierarchical models of visual processing. Here, we extend a biological model of motion processing with a new dictionary learning method tailored for crowd perception. Our approach uses a sparse coding model to learn crowd prototypes. Ensemble coding mechanisms are implemented via structural and local coherence constraints. We evaluate the proposed method on multiple crowd perception problems from collective or abnormal crowd detection to tracking individuals in crowded scenes. Experimental results on crowd datasets demonstrate competitive results on par or better than state-of-the-art approaches.


Sparse coding Crowd perception Biological vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51(5), 4282 (1995)CrossRefGoogle Scholar
  2. 2.
    Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: CVPR (2007)Google Scholar
  3. 3.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)Google Scholar
  4. 4.
    Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.J.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV (2009)Google Scholar
  5. 5.
    Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: CVPR (2010)Google Scholar
  6. 6.
    Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)Google Scholar
  7. 7.
    Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR (2011)Google Scholar
  8. 8.
    Cui, X., Liu, Q., Gao, M., Metaxas, D.: Abnormal detection using interaction energy potentials. In: CVPR (2011)Google Scholar
  9. 9.
    Mehran, R., Moore, B.E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kratz, L., Nishino, K.: Going with the flow: Pedestrian efficiency in crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 558–572. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Zhou, B., Tang, X., Wang, X.: Measuring crowd collectiveness. In: CVPR (2013)Google Scholar
  12. 12.
    Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: CVPR (2010)Google Scholar
  13. 13.
    Solmaz, B., Moore, B., Shah, M.: Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE TPAMI 34(10), 2064–2070 (2012)CrossRefGoogle Scholar
  14. 14.
    Hospedales, T., Gong, S., Xiang, T.: Video behaviour mining using a dynamic topic model. International Journal of Computer Vision 98(3), 303–323 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: ICCV (2009)Google Scholar
  16. 16.
    Lin, D., Grimson, E., Fisher, J.: Learning visual flows: A lie algebraic approach. In: CVPR (2009)Google Scholar
  17. 17.
    Kim, J., Grauman, K.: Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: CVPR (2009)Google Scholar
  18. 18.
    Andrade, E., Blunsden, S., Fisher, R.: Hidden markov models for optical flow analysis in crowds. In: ICPR (2006)Google Scholar
  19. 19.
    Zhao, X., Gong, D., Medioni, G.: Tracking using motion patterns for very crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 315–328. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Zen, G., Ricci, E.: Earth mover’s prototypes: A convex learning approach for discovering activity patterns in dynamic scenes. In: CVPR (2011)Google Scholar
  21. 21.
    Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR (2011)Google Scholar
  22. 22.
    Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: ICCV (2013)Google Scholar
  23. 23.
    Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)Google Scholar
  24. 24.
    Zen, G., Ricci, E., Sebe, N.: Exploiting sparse representations for robust analysis of noisy complex video scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 199–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Sweeny, T.D., Haroz, S., Whitney, D.: Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance 39(2), 329 (2013)Google Scholar
  26. 26.
    Crouzet, S.M., Serre, T.: What are the visual features underlying rapid object recognition? Frontiers in Psychology 2 (2011)Google Scholar
  27. 27.
    Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4(3), 179–192 (2003)CrossRefGoogle Scholar
  28. 28.
    Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV (2007)Google Scholar
  29. 29.
    Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Qin, L., Yao, H., Huang, Q.: Abnormal crowd behavior detection based on social attribute-aware force model. In: ICIP (2012)Google Scholar
  31. 31.
    Zhang, Y., Qin, L., Yao, H., Xu, P., Huang, Q.: Beyond particle flow: Bag of trajectory graphs for dense crowd event recognition. In: ICIP (2013)Google Scholar
  32. 32.
    Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. IEEE TIP (2011)Google Scholar
  33. 33.
    Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: NIPS (2006)Google Scholar
  34. 34.
    Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: CVPR (2010)Google Scholar
  35. 35.
    Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yanhao Zhang
    • 1
    • 2
  • Shengping Zhang
    • 1
  • Qingming Huang
    • 2
  • Thomas Serre
    • 1
  1. 1.Department of Cognitive Linguistic & Psychological Sciences, Institute for Brain SciencesBrown UniversityUSA
  2. 2.School of Computer ScienceHarbin Institute of TechnologyHarbinChina

Personalised recommendations