Skip to main content

Variational Dependent Multi-output Gaussian Process Dynamical Systems

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

Abstract

This paper presents a dependent multi-output Gaussian process (GP) for modeling complex dynamical systems. The outputs are dependent in this model, which is largely different from previous GP dynamical systems. We adopt convolved multi-output GPs to model the outputs, which are provided with a flexible multi-output covariance function. We adapt the variational inference method with inducing points for approximate posterior inference of latent variables. Conjugate gradient based optimization is used to solve parameters involved. Besides the temporal dependency, the proposed model also captures the dependency among outputs in complex dynamical systems. We evaluate the model on both synthetic and real-world data, and encouraging results are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez, M.A., Luengo, D., Lawrence, N.D.: Linear latent force models using Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 2693–2705 (2013)

    Article  Google Scholar 

  2. Álvarez, M.A., Lawrence, N.D.: Computationally efficient convolved multiple output Gaussian processes. Journal of Machine Learning Research 12, 1459–1500 (2011)

    MATH  Google Scholar 

  3. Álvarez, M.A., Luengo, D., Lawrence, N.D.: Latent force models. In: Proceedings of the 12th International Conference on Articicial Intelligence and Statistics, pp. 9–16 (2009)

    Google Scholar 

  4. Bonilla, E.V., Chai, K.M., Williams, C.K.I.: Multi-task Gaussian process prediction. In: Advances in Neural Information Processing Systems, vol. 18, pp. 153–160 (2008)

    Google Scholar 

  5. Damianou, A.C., Ek, C.H., Titsias, M.K., Lawrence, N.D.: Manifold relevance determination. In: Proceedings of the 29th International Conference on Machine Learning, pp. 145–152 (2012)

    Google Scholar 

  6. Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational Gaussian process dynamical systems. In: Advances in Neural Information Processing Systems, vol. 24, pp. 2510–2518 (2011)

    Google Scholar 

  7. Deisenroth, M.P., Mohamed, S.: Expectation propagation in Gaussian process dynamical systems. In: Advances in Neural Information Processing Systems, vol. 25, pp. 2618–2626 (2012)

    Google Scholar 

  8. Hartikainen, J., Särkkä, S.: Sequential inference for latent force models (2012), http://arxiv.org/abs/1202.3730

  9. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in Neural Information Processing Systems, vol. 17, pp. 329–336 (2004)

    Google Scholar 

  10. Lawrence, N.D.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Lawrence, N.D.: Learning for larger dataset with the Gaussian process latent variable model. In: Proceedings of the 11th International Workshop on Artificial Intelligence and Statistics, pp. 243–250 (2007)

    Google Scholar 

  12. Luttinen, J., Ilin, A.: Efficient Gaussian process inference for short-scale spatio-temporal modeling. In: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, pp. 741–750 (2012)

    Google Scholar 

  13. Opper, M., Archambeau, A.: The variational Gaussian approximation revisited. Neural Computation 21, 786–792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Park, H., Yun, S., Park, S., Kim, J., Yoo, C.D.: Phoneme classification using constrained variational Gaussian process dynamical system. In: Advances in Neural Information Processing Systems, vol. 22, pp. 2015–2023 (2012)

    Google Scholar 

  15. Rasmussen, C.E., Williams, C.K.I.: Gaussian Process for Machine Learning. MIT Press (2006)

    Google Scholar 

  16. Sun, S.: A review of deterministic approximate inference techniques for Bayesian machine learning. Neural Computing and Applications 23, 2039–2050 (2013)

    Article  Google Scholar 

  17. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent variables. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1345–1352 (2007)

    Google Scholar 

  18. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61, 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Titsias, M.K.: Variational learning of inducing variables in sparse Gaussian processes. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, pp. 567–574 (2009)

    Google Scholar 

  20. Titsias, M.K., Lawrence, N.D.: Bayesian Gaussian process latent variable model. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 844–851 (2010)

    Google Scholar 

  21. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In: Advances in Neural Information Processing Systems, vol. 19, pp. 1441–1448 (2006)

    Google Scholar 

  22. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 283–398 (2008)

    Article  Google Scholar 

  23. Wilson, A.G., Knowles, D.A., Ghahramani, Z.: Gaussian process regression networks. In: Proceedings of the 29th International Conference on Machine Learning, pp. 599–606 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, J., Sun, S. (2014). Variational Dependent Multi-output Gaussian Process Dynamical Systems. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics