Abstract
We propose a new method for computing the tree edit distance between two unordered trees by problem encoding. Our method transforms an instance of the computation into an instance of some IP problems and solves it by an efficient IP solver. The tree edit distance is defined as the minimum cost of a sequence of edit operations (either substitution, deletion, or insertion) to transform a tree into another one. Although its time complexity is NP-hard, some encoding techniques have been proposed for computational efficiency. An example is an encoding method using the clique problem. As a new encoding method, we propose to use IP solvers and provide new IP formulations representing the problem of finding the minimum cost mapping between two unordered trees, where the minimum cost exactly coincides with the tree edit distance. There are IP solvers other than that for the clique problem and our method can efficiently compute ariations of the tree edit distance by adding additional constraints. Our experimental results with Glycan datasets and the Web log datasets CSLOGS show that our method is much faster than an existing method if input trees have a large degree. We also show that two variations of the tree edit distance could be computed efficiently by IP solvers.
Keywords
- tree edit distance
- unordered tree
- IP formulation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Achterberg, T.: Scip: Solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009), http://mpc.zib.de/index.php/MPC/article/view/4
Akutsu, T., Tamura, T., Fukagawa, D., Takasu, A.: Efficient exponential time algorithms for edit distance between unordered trees. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 360–372. Springer, Heidelberg (2012)
Bixby, E.R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and practice-closing the gap. In: Powell, M.J.D., Scholtes, S. (eds.) System Modelling and Optimization: Methods, Theory, and Applications. IFIP, vol. 46, pp. 19–49. Springer, Boston (2000)
Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed integer programming: a progress report. In: The Sharpest Cut: The Impact of Manfred Padberg and His Work. MPS-SIAM Series on Optimization, vol. 4, pp. 309–326 (2004)
Daiji, F., Takeyuki, T., Atushiro, T., Etsuji, T., Tatsuya, A.: A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures. BMC Bioinformatics 12 (2011)
Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial Mathematics (2008)
Higuchi, S., Kan, T., Yamamoto, Y., Hirata, K.: An A* algorithm for computing edit distance between rooted labeled unordered trees. In: Okumura, M., Bekki, D., Satoh, K. (eds.) JSAI-isAI 2012. LNCS, vol. 7258, pp. 186–196. Springer, Heidelberg (2012)
Horesh, Y., Mehr, R., Unger, R.: Designing an A* algorithm for calculating edit distance between rooted-unordered trees. Journal of Computational Biology 13(6), 1165–1176 (2006)
IBM: IBM ILOG CPLEX Optimizer (2010), http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between rna structures. Journal of Computational Biology 9(2), 371–388 (2002)
Kan, T., Higuchi, S., Hirata, K.: Segmental mapping and distance for rooted labeled ordered trees. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 485–494. Springer, Heidelberg (2012)
Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1), 27–30 (2000)
Kuboyama, T.: Matching and learning in trees. Ph.D Thesis (The University of Tokyo) (2007)
Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E., Akutsu, T.: An improved clique-based method for computing edit distance between rooted unordered trees. SIG-BIO 2011(3), 1–6 (2011)
Shasha, D., Wang, J.L., Zhang, K., Shih, F.Y.: Exact and approximate algorithms for unordered tree matching. IEEE Transactions on Systems, Man and Cybernetics 24(4), 668–678 (1994)
Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM (JACM) 26(3), 422–433 (1979)
Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings of the 8th International Symposium of String Processing and Information Retrieval, pp. 212–219. Press (2001)
Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035 (2005)
Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Information Processing Letters 42(3), 133–139 (1992)
Zhang, K., Shasha, D., Wang, J.T.L.: Approximate tree matching in the presence of variable length don’t cares. Journal of Algorithms 16(1), 33–66 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kondo, S., Otaki, K., Ikeda, M., Yamamoto, A. (2014). Fast Computation of the Tree Edit Distance between Unordered Trees Using IP Solvers. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-11812-3_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11811-6
Online ISBN: 978-3-319-11812-3
eBook Packages: Computer ScienceComputer Science (R0)