Skip to main content

Mining Cohesive Itemsets in Graphs

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

Abstract

Discovering patterns in graphs is a well-studied field of data mining. While a lot of work has already gone into finding structural patterns in graph datasets, we focus on relaxing the structural requirements in order to find items that often occur near each other in the input graph. By doing this, we significantly reduce the search space and simplify the output. We look for itemsets that are both frequent and cohesive, which enables us to use the anti-monotonicity property of the frequency measure to speed up our algorithm. We experimentally demonstrate that our method can handle larger and more complex datasets than the existing methods that either run out of memory or take too long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., Mira, N.P., Lourenço, A.B., dos Santos, S.C., Cabrito, T.R., Francisco, A.P., Madeira, S.C., Aires, R.S., Oliveira, A.L., Sá-Correia, I., Freitas, A.T.: YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Research 39 (2011)

    Google Scholar 

  2. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 858–863. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Cherry, J.: SGD: Saccharomyces Genome Database. Nucleic Acids Research 26(1), 73–79 (1998)

    Article  Google Scholar 

  4. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1, 231–255 (1994)

    Google Scholar 

  5. Cule, B., Goethals, B., Hendrickx, T.: Mining interesting itemsets in graph datasets. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS, vol. 7818, pp. 237–248. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)

    Article  Google Scholar 

  7. Guan, Z., Wu, J., Zhang, Q., Singh, A., Yan, X.: Assessing and ranking structural correlations in graphs. In: Proc. of the 2011 ACM SIGMOD Int. Conf. on Management of Data, pp. 937–948 (2011)

    Google Scholar 

  8. Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs from graph databases. In: Proc. of the 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 581–586 (2004)

    Google Scholar 

  9. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning 50, 321–354 (2003)

    Article  MATH  Google Scholar 

  11. Karunaratne, T., Boström, H.: Can frequent itemset mining be efficiently and effectively used for learning from graph data? In: Proc. of the 11th Int. Conf. on Machine Learning and Applications (ICMLA), pp. 409–414 (2012)

    Google Scholar 

  12. Khan, A., Yan, X., Wu, K.L.: Towards proximity pattern mining in large graphs. In: Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of Data, pp. 867–878 (2010)

    Google Scholar 

  13. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. of the 2001 IEEE Int. Conf. on Data Mining, pp. 313–320 (2001)

    Google Scholar 

  14. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. Data Mining and Knowledge Discovery 11, 243–271 (2005)

    Article  MathSciNet  Google Scholar 

  15. Nijssen, S., Kok, J.: The gaston tool for frequent subgraph mining. Electronic Notes in Theoretical Computer Science 127, 77–87 (2005)

    Article  Google Scholar 

  16. Silva, A., Meira, J.W., Zaki, M.J.: Structural correlation pattern mining for large graphs. In: Proc. of the 8th Workshop on Mining and Learning with Graphs, pp. 119–126 (2010)

    Google Scholar 

  17. Silva, A., Meira, J.W., Zaki, M.J.: Mining attribute-structure correlated patterns in large attributed graphs. Proc. of the VLDB Endowment 5(5), 466–477 (2012)

    Article  Google Scholar 

  18. The Gene Ontology Consortium: Gene Ontology annotations and resources. Nucleic Acids Research 41(Database issue), D530–D535 (2013)

    Google Scholar 

  19. Washio, T., Motoda, H.: State of the art of graph-based data mining. ACM SIGKDD Explorations Newsletter 5, 59–68 (2003)

    Article  Google Scholar 

  20. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of the 2002 IEEE Int. Conf. on Data Mining, pp. 721–724 (2002)

    Google Scholar 

  21. Yan, X., Han, J.: Closegraph: Mining closed frequent graph patterns. In: Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining, pp. 286–295 (2003)

    Google Scholar 

  22. Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity constraints. In: Proc. of the 11th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining, pp. 324–333 (2005)

    Google Scholar 

  23. Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning framework. Journal of Applied Intelligence 4, 297–316 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hendrickx, T., Cule, B., Goethals, B. (2014). Mining Cohesive Itemsets in Graphs. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics