Skip to main content

A Deep Variational Model for Image Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Abstract

In this paper we introduce a novel model that combines Deep Convolutional Neural Networks with a global inference model. Our model is derived from a convex variational relaxation of the minimum s-t cut problem on graphs, which is frequently used for the task of image segmentation. We treat the outputs of Convolutional Neural Networks as the unary and pairwise potentials of a graph and derive a smooth approximation to the minimum s-t cut problem. During training, this approximation facilitates the adaptation of the Convolutional Neural Network to the smoothing that is induced by the global model. The training algorithm can be understood as a modified backpropagation algorithm, that explicitly takes the global inference layer into account.

We illustrate our approach on the task of supervised figure-ground segmentation. In contrast to competing approaches we train directly on the raw pixels of the input images and do not rely on hand-crafted features. Despite its generality, simplicity and complete lack of hand-crafted features, our approach is able to yield competitive performance on the Graz02 and Weizmann Horses datasets.

The authors acknowledge support from the Austrian science fund (FWF) under the projects No. I1148 and No. Y729.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aldavert, D., Ramisa, A., de Mantaras, R.L., Toledo, R.: Fast and robust object segmentation with the integral linear classifier. In: CVPR (2010)

    Google Scholar 

  2. Alvarez, J.M., LeCun, Y., Gevers, T., Lopez, A.: Semantic road segmentation via multi-scale ensembles of learned features. In: ECCV Workshops (2012)

    Google Scholar 

  3. Bertelli, L., Yu, T., Vu, D., Gokturk, B.: Kernelized structural svm learning for supervised object segmentation. In: CVPR (2011)

    Google Scholar 

  4. Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: CVPR (2004)

    Google Scholar 

  5. Bottou, L., Le Cun, Y., Bengio, Y.: Global training of document processing systems using graph transformer networks. In: Proceedings of Computer Vision and Pattern Recognition, pp. 489–493. IEEE, Puerto-Rico (1997)

    Google Scholar 

  6. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: ICCV (2001)

    Google Scholar 

  7. Brakel, P., Stroobandt, D., Schrauwen, B.: Training energy-based models for time-series imputation. J. of Mach. Learn. Res. 14, 2771–2797 (2013)

    MathSciNet  Google Scholar 

  8. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. IJCV 84(3), 288–307 (2009)

    Article  Google Scholar 

  9. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. J. App. Math. 66, 1632–1648 (2004)

    MathSciNet  Google Scholar 

  10. Cour, T., Gogin, N., Shi, J.: Learning spectral graph segmentation. In: AISTATS (2005)

    Google Scholar 

  11. Domke, J.: Generic methods for optimization-based modeling. J. Mach. Learn. Res. 22, 318–326 (2012)

    Google Scholar 

  12. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Scene parsing with multiscale feature learning, purity trees, and optimal covers. In: ICML (2012)

    Google Scholar 

  13. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: ICCV (2009)

    Google Scholar 

  14. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neur. Comput. 14, 1771–1800 (2000)

    Article  Google Scholar 

  15. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neur. Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: NIPS (2008)

    Google Scholar 

  17. Jancsary, J., Nowozin, S., Sharp, T., Rother, C.: Regression tree fields - an efficient, non-parametric approach to image labeling problems. In: CVPR (2012)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  19. Kuettel, D., Ferrari, V.: Figure-ground segmentation by transferring window masks. In: CVPR (2012)

    Google Scholar 

  20. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

    Google Scholar 

  21. Lempitsky, V.S., Vedaldi, A., Zisserman, A.: Pylon model for semantic segmentation. In: NIPS (2011)

    Google Scholar 

  22. Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation. IJCV 81(1), 105–118 (2009)

    Article  Google Scholar 

  23. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marszalek, M., Schmid, C.: Accurate object localization with shape masks. In: CVPR (2007)

    Google Scholar 

  25. Nesterov, Y.: Gradient methods for minimizing composite objective function. Math. Program. 140, 125–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., Kohli, P.: Decision tree fields. In: ICCV (2011)

    Google Scholar 

  27. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. PAMI 28, 416–431 (2004)

    Article  Google Scholar 

  28. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: CVPR (2009)

    Google Scholar 

  29. Samuel, K.G.G., Tappen, M.F.: Learning optimized map estimates in continuously-valued mrf models. In: CVPR (2009)

    Google Scholar 

  30. Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional networks. In: IJCNN, pp. 2809–2813 (2011)

    Google Scholar 

  31. Tappen, M.F., Samuel, K.G.G., Dean, C.V., Lyle, D.M.: The logistic random field - a convenient graphical model for learning parameters for mrf-based labeling. In: CVPR (2008)

    Google Scholar 

  32. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K.L., Denk, W., Seung, H.S.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Ranftl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ranftl, R., Pock, T. (2014). A Deep Variational Model for Image Segmentation. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics