Efficient Metropolis-Hasting Image Analysis for the Location of Vascular Entity

  • Henrik SkibbeEmail author
  • Marco Reisert
  • Shin Ishii
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8753)


In this paper we present a novel approach for probabilistically exploring and modeling vascular networks in 3D angiograms. For modeling the vascular morphology and topology a graph-like particle model is used. Each particle represents the intrinsic properties of a small fraction of a vessel including position, orientation and scale. Explicit connections between particles determine the network topology. In evaluation using simulated as well as real X-ray and time-of-flight MRI angiograms the proposed method was able to accurately model the vascular network.



This work was supported by Bioinformatics for Brain Sciences under the Strategic Research Program for Brain Sciences, MEXT (Japan). The work of M. Reisert is supported by the Deutsche Forschungsgemeinschaft (DFG), grant RE 3286/2-1.


  1. 1.
    Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002)CrossRefGoogle Scholar
  2. 2.
    Basu, S., Kulikova, M., Zhizhina, E., Ooi, W.T., Racoceanu, D.: A stochastic model for automatic extraction of 3D neuronal morphology. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 396–403. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Bauer, C., Bischof, H.: A novel approach for detection of tubular objects and its application to medical image analysis. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 163–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bogunović, H., Pozo, J.M., Villa-Uriol, M.C., Majoie, C.B., van den Berg, R., van Andel, H.A.G., Macho, J.M., Blasco, J., Román, L.S., Frangi, A.F.: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study. Med. Phys. 38, 210 (2011)CrossRefGoogle Scholar
  5. 5.
    Chai, D., Forstner, W., Lafarge, F.: Recovering line-networks in images by junction-point processes. In: Proceedings of the CVPR, IEEE (2013)Google Scholar
  6. 6.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 602–611. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1568–1579 (2005)CrossRefGoogle Scholar
  10. 10.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  11. 11.
    Reisert, M., Burkhardt, H.: Harmonic filters for generic feature detection in 3D. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 131–140. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)CrossRefGoogle Scholar
  13. 13.
    Shikata, H., McLennan, G., Hoffman, E.A., Sonka, M.: Segmentation of pulmonary vascular trees from thoracic 3D CT images. J. Biomed. Imaging 2009, 24 (2009)Google Scholar
  14. 14.
    Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam, B.: Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans. Med. Imaging 26(2), 223–237 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Department of RadiologyUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations