Advertisement

An Offline Optimal SPARQL Query Planning Approach to Evaluate Online Heuristic Planners

Conference paper
  • 1.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8786)

Abstract

In graph databases, a given graph query can be executed in a large variety of semantically equivalent ways. Each such execution plan produces the same results, but at different computation costs. The query planning problem consists of finding, for a given query, an execution plan with the minimum cost. The traditional greedy or heuristic cost-based approaches addressing the query planning problem do not guarantee by design the optimality of the chosen execution plan. In this paper, we present a principled framework to solve the query planning problem by casting it into an Integer Linear Programming problem, and discuss its applications to testing and improving heuristic-based query planners.

Keywords

RDF SPARQL Query Optimization Query Planning ILP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bornea, M., Dolby, J., Fokoue, A., Kementsietsidis, A., Srinivas, K.: An offline optimal sparql query planning approach, http://researcher.watson.ibm.com/researcher/files/us-achille/techreport.pdf
  2. 2.
    Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bishwaranjan, B.: Building an efficient rdf store over a relational database. In: Proceedings of the ACM SIGMOD Conference, SIGMOD 2013 (2013)Google Scholar
  3. 3.
    Chaudhuri, S.: An overview of query optimization in relational systems. In: SIGACT-SIGMOD-SIGART, pp. 34–43 (1998)Google Scholar
  4. 4.
    Graefe, G.: The cascades framework for query optimization. Data Engineering Bulletin 18 (1995)Google Scholar
  5. 5.
    Graefe, G., DeWitt, D.J.: The exodus optimizer generator. SIGMOD Record, 160–172 (1987)Google Scholar
  6. 6.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Journal of Web Semantics 3(2-3), 158–182 (2005)CrossRefGoogle Scholar
  7. 7.
    Haas, L.M., Freytag, J.C., Lohman, G.M., Pirahesh, H.: Extensible query processing in starburst. SIGMOD Record, 377–388 (1989)Google Scholar
  8. 8.
    Hartig, O., Heese, R.: The SPARQL query graph model for query optimization. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 564–578. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Ibaraki, T., Kameda, T.: On the optimal nesting order for computing n-relational joins. ACM Trans. Database Syst. 9(3), 482–502 (1984), http://doi.acm.org/10.1145/1270.1498
  10. 10.
    Ioannidis, Y.E.: Query optimization. In: The Computer Science and Engineering Handbook, pp. 1038–1057 (1997)Google Scholar
  11. 11.
    Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv., 111–152 (1984)Google Scholar
  12. 12.
    Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete owl ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11762256_12 Google Scholar
  13. 13.
    Maduko, A., Anyanwu, K., Sheth, A., Schliekelman, P.: Estimating the cardinality of rdf graph patterns. In: WWW, pp. 1233–1234 (2007)Google Scholar
  14. 14.
    Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Muralikrishna, M., DeWitt, D.J.: Equi-depth histograms for estimating selectivity factors for multi-dimensional queries. In: SIGMOD, pp. 28–36 (1988)Google Scholar
  16. 16.
    Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. The VLDB Journal 19(1), 91–113 (2010)CrossRefGoogle Scholar
  17. 17.
    Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp. 294–305 (1996)Google Scholar
  18. 18.
    Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance Benchmark. CoRR abs/0806.4627 (2008)Google Scholar
  19. 19.
    Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: SIGMOD (1979)Google Scholar
  20. 20.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW (2008)Google Scholar
  21. 21.
    Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.: Heuristics-based query optimisation for SPARQL. In: EDBT, pp. 324–335 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IBM T.J. Watson ResearchYorktown HeightsUSA

Personalised recommendations