PHASE: A Stochastic Formalism for Phase-Type Distributions

  • Gabriel Ciobanu
  • Armand Stefan Rotaru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8829)


Models of non-Markovian systems expressed using stochastic formalisms often employ phase-type distributions in order to approximate the duration of transitions. We introduce a stochastic process calculus named PHASE which operates with phase-type distributions, and provide a step-by-step description of how PHASE processes can be translated into models supported by the probabilistic model checker PRISM. We then illustrate our approach by analysing the behaviour of a simple system involving both non-Markovian and Markovian transitions.


  1. 1.
    Asmussen, S., Nerman, O., Olsson, M.: Fitting Phase-type Distributions via the EM Algorithm. Scandinavian Journal of Statistics 23(4), 419–441 (1996)MATHGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bernardo, M., Gorrieri, R.: Extended Markovian Process Algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Bradley, J.T.: Semi-Markov PEPA: Modelling with generally distributed actions. International Journal of Simulation 6(3-4), 43–51 (2005)Google Scholar
  5. 5.
    Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions and relations of stochastic process algebras with general distributions. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Crovella, M.E.: Performance Evaluation with Heavy Tailed Distributions. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 1–10. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    D’Argenio, P.: Algebras and Automata for Timed and Stochastic Systems. PhD thesis, University of Twente (1999)Google Scholar
  8. 8.
    D’Argenio, P., Katoen, J.-P., Brinksma, E.: A compositional approach to generalised semi-Markov processes. In: Guia, A., Spathopoulos, M., Smedinga, R. (eds.) Proceedings of WODES 1998, pp. 391–397. IEEE Press, New York (1998)Google Scholar
  9. 9.
    Doherty, G., Massink, M., Faconti, G.: Reasoning about interactive systems with stochastic models. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220, pp. 144–163. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    El-Rayes, A., Kwiatkowska, M., Norman, G.: Solving infinite stochastic process algebra models through matrix-geometric methods. In: Hillston, J., Silva, M. (eds.) Proceedings of PAPM 1999, Zaragoza, Spain, pp. 41–62. Prensas Universitarias de Zaragoza (1999)Google Scholar
  11. 11.
    Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional modelling and analysis framework for stochastic hybrid systems. In: Formal Methods in System Design (2012)Google Scholar
  12. 12.
    Harrison, P.G., Strulo, B.: Stochastic process algebra for discrete event simulation. In: Baccelli, F., Jean-Marie, A., Mitrani, I. (eds.) Quantitative Methods in Parallel Systems, pp. 18–37. Springer, Berlin (1995)CrossRefGoogle Scholar
  13. 13.
    Hermanns, H.: Interactive Markov Chains - The Quest for Quantified Quality. Springer, Berlin (2002)CrossRefGoogle Scholar
  14. 14.
    Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation for a plain-old telephone system. Science of Computer Programming 36(1), 97–127 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  16. 16.
    Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Computer Performance Evaluation: Modelling Techniques and Tools, pp. 82–91. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Katoen, J.-P., D’Argenio, P.R.: General distributions in process algebra. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 375–429. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Nelson, R.: Probability, Stochastic Processes, and Queueing Theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  19. 19.
    Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic approach. Dover Publications (1981)Google Scholar
  20. 20.
    Norris, J.R.: Markov chains. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  21. 21.
    Pulungan, M.R.: Reduction of Acyclic Phase-Type Representations. PhD thesis, Saarland University, Germany (2009)Google Scholar
  22. 22.
    Reinecke, P., Krauss, T., Wolter, K.: HyperStar: Phase-type Fitting Made Easy. In: Proceedings of QEST 2012, pp. 201–202. IEEE Computer Society, Washington, DC (2012)Google Scholar
  23. 23.
    Riaño, G., Pérez, J.F.: jPhase: an Object-Oriented Tool for Modeling Phase-Type Distributions. In: Meini, B., van Houdt, B. (eds.) Proceeding of SMCTools 2006, vol. 5, ACM, New York (2006)Google Scholar
  24. 24.
    Wolf, V.: Equivalences on phase type processes. PhD thesis, University of Mannheim, Germany (2008)Google Scholar
  25. 25.
    Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Zeng, K.: Logics and Models for Stochastic Analysis Beyond Markov Chains. PhD thesis, Technical University of Denmark, Denmark (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gabriel Ciobanu
    • 1
  • Armand Stefan Rotaru
    • 1
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania

Personalised recommendations