A Hybrid Model of Connectors in Cyber-Physical Systems

  • Xiaohong Chen
  • Jun Sun
  • Meng Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8829)

Abstract

Compositional coordination models and languages play an important role in cyber-physical systems (CPSs). In this paper, we introduce a formal model for describing hybrid behaviors of connectors in CPSs. We extend the constraint automata model, which is used as the semantic model for the exogenous channel-based coordination language Reo, to capture the dynamic behavior of connectors in CPSs where the discrete and continuous dynamics co-exist and interact with each other. In addition to the formalism, we also provide a theoretical compositional approach for constructing the product automata for a Reo circuit, which is typically obtained by composing several primitive connectors in Reo.

References

  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and Temporal Logics for Timed Component Connectors. In: Proceedings of SEFM2004, pp. 198–207. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society (1996)Google Scholar
  7. 7.
    Kokash, N., Krause, C., de Vink, E.: Time and data aware analysis of graphical service models. In: Proceedings of SEFM 2010, pp. 125–134. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: A framework for model-checking dataflow in service compositions. In: Formal Aspects of Computing, vol. 24, pp. 187–216.Google Scholar
  9. 9.
    Lee, E.A.: Computing Foundations and Practice for Cyber Physical Systems: A Preliminary Report. Technical Report UCB/EECS-2007-72, Department of Electrical Engineering and Computer Sciences, UC Berkeley (2007)Google Scholar
  10. 10.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O Automata Revisited. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 403–417. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O Automata. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 496–510. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Meng, S.: Connectors as designs: The time dimension. In: Proceedings of TASE 2012, pp. 201–208. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Peano, G.: Demonstration de l’intégrabilité des équations defférentielles ordinaires. Mathematische Annalen 37, 182–228 (1890)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xiaohong Chen
    • 1
  • Jun Sun
    • 2
  • Meng Sun
    • 1
  1. 1.LMAM & Department of Informatics, School of Mathematical SciencesPeking UniversityChina
  2. 2.Singapore University of Technology and DesignSingapore

Personalised recommendations