A Hybrid Model of Connectors in Cyber-Physical Systems

  • Xiaohong Chen
  • Jun Sun
  • Meng Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8829)

Abstract

Compositional coordination models and languages play an important role in cyber-physical systems (CPSs). In this paper, we introduce a formal model for describing hybrid behaviors of connectors in CPSs. We extend the constraint automata model, which is used as the semantic model for the exogenous channel-based coordination language Reo, to capture the dynamic behavior of connectors in CPSs where the discrete and continuous dynamics co-exist and interact with each other. In addition to the formalism, we also provide a theoretical compositional approach for constructing the product automata for a Reo circuit, which is typically obtained by composing several primitive connectors in Reo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and Temporal Logics for Timed Component Connectors. In: Proceedings of SEFM2004, pp. 198–207. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society (1996)Google Scholar
  7. 7.
    Kokash, N., Krause, C., de Vink, E.: Time and data aware analysis of graphical service models. In: Proceedings of SEFM 2010, pp. 125–134. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: A framework for model-checking dataflow in service compositions. In: Formal Aspects of Computing, vol. 24, pp. 187–216.Google Scholar
  9. 9.
    Lee, E.A.: Computing Foundations and Practice for Cyber Physical Systems: A Preliminary Report. Technical Report UCB/EECS-2007-72, Department of Electrical Engineering and Computer Sciences, UC Berkeley (2007)Google Scholar
  10. 10.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O Automata Revisited. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 403–417. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O Automata. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 496–510. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Meng, S.: Connectors as designs: The time dimension. In: Proceedings of TASE 2012, pp. 201–208. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Peano, G.: Demonstration de l’intégrabilité des équations defférentielles ordinaires. Mathematische Annalen 37, 182–228 (1890)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xiaohong Chen
    • 1
  • Jun Sun
    • 2
  • Meng Sun
    • 1
  1. 1.LMAM & Department of Informatics, School of Mathematical SciencesPeking UniversityChina
  2. 2.Singapore University of Technology and DesignSingapore

Personalised recommendations