An LTL Model Checking Approach for Biological Parameter Inference

  • Emmanuelle Gallet
  • Matthieu Manceny
  • Pascale Le Gall
  • Paolo Ballarini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8829)

Abstract

The identification of biological parameters governing dynamics of Genetic Regulatory Networks (GRN) poses a problem of combinatorial explosion, since the possibilities of parameter instantiation are numerous even for small networks. In this paper, we propose to adapt LTL model checking algorithms to infer biological parameters from biological properties given as LTL formulas. In order to reduce the combinatorial explosion, we represent all the dynamics with one parametric model, so that all GRN dynamics simply result from all eligible parameter instantiations. LTL model checking algorithms are adapted by postponing the parameter instantiation as far as possible. Our approach is implemented within the SPuTNIk tool.

Keywords

LTL Model Checking Parameter Identification Symbolic Execution Genetic Regulatory Network Thomas Discrete Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  2. 2.
    Barnat, J., Brim, L., Krejci, A., Streck, A., Safránek, D., Vejnar, M., Vejpustek, T.: On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput. Biology Bioinform. 9(3), 693–705 (2012)CrossRefGoogle Scholar
  3. 3.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bodden, E.: LTL2BA4J Software. RWTH Aachen University (2011), http://www.sable.mcgill.ca/~ebodde/rv/ltl2ba4j/
  5. 5.
    Corblin, F., Fanchon, E., Trilling, L.: Applications of a formal approach to decipher discrete genetic networks. BMC Bioinformatics 11, 385 (2010)CrossRefGoogle Scholar
  6. 6.
    Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.: A declarative constraint-based method for analyzing discrete genetic regulatory networks. BioSystems 98, 91–104 (2009)CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Filopon, D., Mérieau, A., Bernot, G., Comet, J.-P., Leberre, R., Guery, B., Polack, B., Guespin, J.: Epigenetic acquisition of inducibility of type III cytotoxicity in P. aeruginosa. BMC Bioinformatics 7, 272–282 (2006)CrossRefGoogle Scholar
  9. 9.
    Fromentin, J., Comet, J.-P., Le Gall, P., Roux, O.: Analysing gene regulatory networks by both constraint programming and model-checking. In: 29th IEEE Engineering in Medicine and Biology Society, EMBC 2007, pp. 4595–4598 (2007)Google Scholar
  10. 10.
    Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Khalis, Z., Comet, J.-P., Richard, A., Bernot, G.: The SMBioNet method for discovering models of gene regulatory networks. Genes, Genomes and Genomics 3(special issue 1), 15–22 (2009)Google Scholar
  13. 13.
    Klarner, H., Streck, A., Šafránek, D., Kolčák, J., Siebert, H.: Parameter identification and model ranking of thomas networks. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 207–226. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Mateus, D., Gallois, J.-P., Comet, J.-P., Le Gall, P.: Symbolic modeling of genetic regulatory networks. Journal of Bioinformatics and Computational Biology 5(2B), 627–640 (2007)Google Scholar
  15. 15.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington, DC (1977)Google Scholar
  16. 16.
    Richard, A.: SMBioNet User manual (2010), http://www.i3s.unice.fr/~richard/smbionet/
  17. 17.
    Snoussi, E., Thomas, R.: Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol. 55(5), 973–991 (1993)CrossRefMATHGoogle Scholar
  18. 18.
    Thieffry, D., Colet, M., Thomas, R.: Formalisation of regulatory networks: a logical method and its automation. Math. Modelling and Sci. Computing 2, 144–151 (1993)Google Scholar
  19. 19.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - II. immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297 (1995)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Emmanuelle Gallet
    • 1
  • Matthieu Manceny
    • 2
  • Pascale Le Gall
    • 1
  • Paolo Ballarini
    • 1
  1. 1.Laboratoire MASEcole Centrale ParisChâtenay-MalabryFrance
  2. 2.Laboratoire LISITE, ISEPParisFrance

Personalised recommendations