Skip to main content

Co-chaperones of the Mammalian Endoplasmic Reticulum

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ampofo E, Welker S, Jung M, Müller L, Greiner M, Zimmermann R, Montenarh M (2013) CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochim Biophys Acta 1830:2938–2945

    CAS  PubMed  Google Scholar 

  • Anttonen A-K, Mahjneh I, Hämäläinen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki A-E (2005) The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311

    CAS  PubMed  Google Scholar 

  • Aridor M (2007) Visiting the ER: the endoplasmic reticulum as a target for therapeutics in traffic related diseases. Adv Drug Deliv Rev 59:759–781

    CAS  PubMed  Google Scholar 

  • Awad W, Estrada I, Shen Y, Hendershot LM (2008) BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Proc Natl Acad Sci U S A 105:1164–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808:925–936

    CAS  PubMed  Google Scholar 

  • Bakowski D, Nelson C, Parekh AB (2012) Endoplasmic reticulum-mitochondria coupling: local Ca2+ signalling with functional consequences. Eur J Physiol 464:27–32

    CAS  Google Scholar 

  • Benedix J, Lajoie P, Jaiswal H, Burgard C, Greiner M, Zimmermann R, Rospert S, Snapp EL, Dudek J (2010) BiP modulates the affinity of its co-chaperone ERj1 to ribosomes. J Biol Chem 285:36427–36433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signalling organelle. Cell Calcium 32:235–249

    CAS  PubMed  Google Scholar 

  • Bies C, Guth S, Janoschek K, Nastainczyk W, Volkmer J, Zimmermann, R (1999) AScj1p homolog and folding catalysts present in dog pancreas microsomes. Biol Chem 380:1175–1182

    CAS  PubMed  Google Scholar 

  • Bies C, Blum R, Dudek J, Nastainczyk W, Oberhauser S, Jung M, Zimmermann R (2004) Characterization of pancreatic ERj3p, a homolog of yeast DnaJ-like protein Scj1p. Biol Chem 385:389–395

    CAS  PubMed  Google Scholar 

  • Blau M, Mullapudi S, Becker T, Dudek J, Zimmermann R, Penczek PA, Beckmann R (2005) ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat Struct Mol Biol 12:1015–1016

    CAS  PubMed  Google Scholar 

  • Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes I Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975b) Transfer of proteins across membranes II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    CAS  Google Scholar 

  • Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102:1558–1566

    CAS  PubMed  Google Scholar 

  • Brickwood S, Bonthron DT, Al-Gazali LI, Piper K, Hearn T, Wilson DI, Hanley NA (2003) Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 40:685–689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brightman SE, Blatch GL, Zetter BR (1995) Isolation of a mouse cDNA encoding MTJ1, a new murine member of the DnaJ family of proteins. Gene 153:249–254

    CAS  PubMed  Google Scholar 

  • Bulleid NJ (2012) Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 4:a013219

    PubMed Central  PubMed  Google Scholar 

  • Burns K, Helgason CD, Bleakley RC, Michalak M (1992) Calreticulin in T-lymphocytes. Identification of calreticulin in T-lymphocytes and demonstration that activation of T-cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem 267:19039–19042

    CAS  PubMed  Google Scholar 

  • Chambers JE, Petrova K, Tomba G, Vendruscolo M, Ron D (2012) ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J Cell Biol 198:371–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung KT, Shen Y, Hendershot H (2002) BAP, a mammalian BiP associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277:47557–47563

    CAS  PubMed  Google Scholar 

  • Cunnea PM, Miranda-Vizuete A, Bertoli G, Simmen T, Damdimopoulos AE, Hermann S, Leinonen S, Huikko MP, Gustafsson J-A, Sitia R, Spyrou G (2003) ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J Biol Chem 278:1059–1066

    CAS  PubMed  Google Scholar 

  • Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, Li A, Cai Y, Kamath PS, King BF, Azurmendi PJ, Tahvanainen P, Kääriäinen H, Höckerstedt K, Devuyst O, Pirson Y, Martin RS, Lifton RP, Tahvanainen E, Tores VE, Somlo S (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 36:575–577

    CAS  PubMed  Google Scholar 

  • Degen E, Williams DB (1991) Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility proteins. J Cell Biol 112:1099–1115

    CAS  PubMed  Google Scholar 

  • Dong M, Bridges JP, Apsley K, Xu Y, Weaveret TE (2008) ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol Biol Cell 19:2620–2630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudek J, Volkmer J, Bies C, Guth S, Müller A, Lerner M, Feick P, Schäfer KH, Morgenstern E, Hennessy F, Blatch GL, Janoscheck K, Heim N, Scholtes P, Frien M, Nastainczyk W, Zimmermann R (2002) A novel type of cochaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 21:2958–2967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudek J, Greiner M, Müller, A, Hendershot LM, Kopsch K, Nastainczyk W, Zimmermann R (2005) ERj1p plays a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol 12:1008–1014

    CAS  PubMed  Google Scholar 

  • English AR, Voeltz GK (2013) Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 5:a013227

    PubMed  Google Scholar 

  • Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsmann A, Kopp A, Helms V, Cavalié A, Wagner R, Zimmermann R (2011) Interaction of calmodulin with Sec61a limits Ca2+ leakage from the endoplasmic reticulum. EMBO J 30:17–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, Coppola D, Kruhoffer M, Aaltonen L, Orntoft TF, Quackenbush J, Yeatman TJ (2005) Molecular staging or surival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535

    CAS  PubMed  Google Scholar 

  • Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S (2011) A genetic interaction network of five genes for human polycystic kidney and liver disease defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43:639–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flourakis M, Van Coppenolle F, Lehen’kyi V, Beck B, Skryma R (2006) Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 20:1215–1217

    CAS  PubMed  Google Scholar 

  • Fritz JM, Dong M, Apsley KS, Martin EP, Na CL, Sitaraman S, Weaver TE (2014) Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol Biol Cell 25:431–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740

    CAS  PubMed  Google Scholar 

  • Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5:a013169

    PubMed  Google Scholar 

  • Giunti R, Gamberucci A, Fulceri R, Banhegyi G (2007) Both translocon and a cation channel are involved in the passive Ca2 + leak from the endoplasmic reticulum: a mechanistic study on rat liver microsomes. Arch Biochem Biophys 462:115–121

    CAS  PubMed  Google Scholar 

  • Görlich D, Prehn S, Hartmann E, Kalies K-U, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503

    PubMed  Google Scholar 

  • Götz G, Müller A, Montenarh M, Zimmermann R, Dudek J (2009) ERj1 is a substrate of phosphorylation by CK2. Biochem Biophys Res Commun 388:637–642

    PubMed  Google Scholar 

  • Greiner M, Kreutzer B, Jung V, Grobholz R, Hasenfus A, Stöhr R, Franz R, Tornillo L, Dudek J, Stöckle M, Unteregger G, Kamradt J, Wullich B, Zimmermann R (2011a) Silencing of the SEC62 gene inhibits migratory and invasive potential of various tumor cells. Int J Cancer 128:2284–2295

    CAS  Google Scholar 

  • Greiner M, Kreutzer B, Lang S, Jung V, Cavalié A, Unteregger G, Zimmermann R, Wullich B (2011b) Sec62 protein level is crucial for ER-stress tolerance of prostate cancer. The Prostate 71:1074–1083

    CAS  Google Scholar 

  • Gumbart J, Schulten K (2007) Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46:11147–11157

    CAS  PubMed  Google Scholar 

  • Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306:387–389

    CAS  PubMed  Google Scholar 

  • Hagerstrand D, Tong A, Schumacher SE, Ilic N, Shen RR, Cheung HW, Vazquez F, Shrestha Y, Kim SY, Giacomelli AO, Rosenbluh J, Schinel AC, Spardy NA, Barbie DA, Mermel CH, Weir BA, Garraway LA, Tamayo P, Mesirov JP, Beroukhim R, Hahn WC (2013) Systematic interrogation of 3q26 identifies TLOC1 and SKL as cancer drivers. Cancer Discov 3:1044–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagiwara M, Maegawa K-i, Suzuki M, Ushioda R, Araki K, Matsumoto JH, Nagata K, Inaba K (2011) Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 41:432–444

    CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    CAS  PubMed  Google Scholar 

  • Hartmann E, Sommer T, Prehn S, Görlich D, Jentsch S, Rapoport TA (1994) Evolutionary conservation of components of the protein translocation complex. Nature 367:654–657

    CAS  PubMed  Google Scholar 

  • Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    CAS  PubMed  Google Scholar 

  • Hayashi T, Rizzuto R, Hajnoczky G, Su T-P (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14:1697–1709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosoda A, Kimata Y, Tsuru A, Kohno K (2003) JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs. J Biol Chem 278:2669–2676

    CAS  PubMed  Google Scholar 

  • Jin Y, Awad W, Petrova K, Hendershot LM (2008) Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J 27:2873–2882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin Y, Zhuang M, Hendershot LM (2009) Erdj3, a luminal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER: identification of critical residues. Biochemistry 48:41–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung V, Kamradt J, Kindich R, Jung M, Mueller M, Schulz WA, Engers R, Stoeckle M, Zimmermann R, Wullich B (2006) Genomic and expression analysis of the 3q25-q26 amplicon reveals TLOC1/SEC62 as a probable target gene in prostate cancer Mol Cancer Res 4:169–176

    CAS  PubMed  Google Scholar 

  • Kang SW, Ran NS, Kim SJ, Garrison JL, Taunton J,.Hegde RS (2006) Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127:999–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S (2004) ORP150/HSP12A regulates purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci 24:1486–1496

    CAS  PubMed  Google Scholar 

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kroczynska B, Evangelista CM, Samant SS, Elguindi EC, Blond SY (2004) The SANT2 domain of murine tumor cell DnaJ-like protein 1 human homologue interacts with α1-antichymotrypsin and kinetically interferes with its serpin inhibitory activity. J Biol Chem 279:11432–11443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurisu J, Honma A, Miyajima H, Kondo S Okumura M, Imaizumi K (2003) MDG1/ERdj4, an ER-resident DnaJ family member, suppresses cell death induced by ER stress. Genes Cells 8:189–202

    CAS  PubMed  Google Scholar 

  • Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, MacAuley A, Goodman AG, LeBoeuf RC, Katze MG (2005) Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–1081

    CAS  PubMed  Google Scholar 

  • Lai CW, Otero JH, Hendershot LM, Snapp E (2012) Erdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery. J Biol Chem 287:7969–7978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang S, Erdmann F, Jung M, Wagner R, Cavalié A, Zimmermann R (2011) Sec61 complexes form ubiquitous ER Ca2 + leak channels. Channels 5:228–235

    CAS  Google Scholar 

  • Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, Jalal C, Greiner M, Haßdenteufel S, Tatzelt J, Kreutzer B, Edelmann L, Krause E, Rettig J, Somlo S, Zimmermann R, Dudek J (2012) Different effects of Sec61a-, Sec62 and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125:1958–1969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin H-Y, Masso-Welch P, Di Y-P, Cai J-W, Shen J-W, Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4:1109–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linxweiler M, Linxweiler J, Barth M, Benedix J, Jung V, Kim Y-J, Bohle R, Zimmermann R, Greiner M (2012) Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer. Am J Pathol 180:473–483

    CAS  PubMed  Google Scholar 

  • Linxweiler M, Schorr S, Jung M, Schäuble N, Linxweiler J, Langer F, Schäfers H-J, Cavalié A, Zimmermann R, Greiner M (2013) Targeting cell migration and the ER stress response with calmodulin antagonists: A clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC–Cancer 13:574

    PubMed Central  PubMed  Google Scholar 

  • Lloyd DJ, Wheeler MC, Gekakis N (2010) A point mutation in Sec61 α leads to Diabetes and Hepatosteatisis in Mice. Diabetes 59:460–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV (2002) Basal and physiological Ca2+ leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem 277:26479–26485

    CAS  PubMed  Google Scholar 

  • Luo S, Mao C, Lee B, Lee AS (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 15:5688–5697

    Google Scholar 

  • Lyman SK, Schekman R (1995) Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J Cell Biol 131:1163–1171

    CAS  PubMed  Google Scholar 

  • Lyman SK, Schekman R (1997) Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88:85–96

    CAS  PubMed  Google Scholar 

  • Ma Y, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107:827–830

    CAS  PubMed  Google Scholar 

  • Macario AJ, Conway de Macario E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    CAS  PubMed  Google Scholar 

  • Madeo F, Kroemer G (2009) Intricate links between ER stress and apoptosis. Mol Cell 33:669–670

    CAS  PubMed  Google Scholar 

  • Mayer H-A, Grau H, Kraft R, Prehn S, Kalies K-U, Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275:14550–14557

    Google Scholar 

  • Meunier L, Usherwood Y-K, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13:4456–4469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mimura N, Hamada H, Kashio M, Jin H, Toyama Y, Kimura K, Iida M, Goto S, Saisho H, Toshimori K, Koseki H, Aoe T (2007) Aberrant quality control in the endoplasmic reticulum impairs the biosynthesis of pulmonary surfactant in mice expressing mutant BiP. Cell Deat Differ 14:1475–1485

    CAS  Google Scholar 

  • Mori Y, Sato F, Selaru FM, Olaru A, Perry K, Kimos MC, Tamura G, Matsubara N, Wang S, Xu Y, Yin J, Zou T-T, Leggett B, Young J, Nukiwa T, Stine OC, Abraham JM, Shibata D, Meltzer SJ (2002) Instabilotyping reveals unique mutational spectra in microsatellite-unstable gastric cancers. Cancer Res 62:3641–3645

    CAS  PubMed  Google Scholar 

  • Müller L, Diaz de Escauriaza M, Lajoie P, Theis M, Jung M, Müller A, Burgard C, Greiner M, Snapp EL, Dudek J, Zimmermann R (2010) Evolutionary gain of function of the ER membrane protein Sec62 from yeast to humans. Mol Biol Cell 21:691–703

    PubMed Central  PubMed  Google Scholar 

  • Munro S, Pelham HRB (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    CAS  PubMed  Google Scholar 

  • Nicchitta CV, Blobel G (1993) Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73:989–998

    CAS  PubMed  Google Scholar 

  • Oh-hashi K, Naruse Y, Amaya F, Shimosato G, Tanaka M (2003) Cloning and Characterization of a novel GRP78-binding protein in the rat brain. J Biol Chem 278:10531–10537

    CAS  PubMed  Google Scholar 

  • Oka OBV, Pringle MA, Schopp IM, Braakman I, Bulleid NJ (2013) ERdj5 is the ER reductase that catalyzes the removal of non-native disulfides and correct folding of the LDL receptor. Mol Cell 50:793–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olzmann JA, Kopito RR, Christianson JA (2012) The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a013185

    Google Scholar 

  • Ong HL, Liu X, Sharma A, Hegde RS, Ambudkar IS (2007) Intracellular Ca2+ release via the ER translocon activates store-operated calcium entry. Pflugers Arch 453:797–808

    CAS  PubMed  Google Scholar 

  • Palade G (1975) Intracellular aspects of protein synthesis. Science 189:347–358

    CAS  PubMed  Google Scholar 

  • Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilche MC, Rossjohn J, Talbot UM, Paton JC (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443:548–552

    CAS  PubMed  Google Scholar 

  • Pelham HRB (1990) The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15:483–486

    PubMed  Google Scholar 

  • Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Lührmann R, Wahl MC (2009) Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 35:454–466

    CAS  PubMed  Google Scholar 

  • Petrova K, Oyadomari S, Hendershot LM, Ron D (2008) Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO J 27:2862–2872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeffer S, Brandt F, Hrabe T, Lang S, Eibauer M, Zimmermann R, Förster F (2012) Structure and 3D arrangement of ER-membrane associated ribosomes. Structure 20:1508–1518

    CAS  PubMed  Google Scholar 

  • Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Förster F (2014) Structure of the mammalian oligosaccharyl-transferase in the native ER protein translocon. Nature Comm. doi:10.1038/ncomms4072

    Google Scholar 

  • Pilon M, Schekman R, Römisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plemper RK, Böhmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    CAS  PubMed  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU, Bracher, A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    CAS  PubMed  Google Scholar 

  • Ron D, Harding HP (2012) Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol 4:a013177

    PubMed Central  PubMed  Google Scholar 

  • Roos A, Buchlremer S, Labisch T, Gatz C, Brauers E, Nolte K, Goebel HH, Zimmermann R, Senderek J, Weis J (2014) Severe degenerative myopathy in woozy mice: chaperonopathy and specific nuclear envelope pathology due to Sil1 dysfuction in a model for Marinesco-Sjögren syndrome. Acta Neuropathologica 127:761–777

    CAS  PubMed  Google Scholar 

  • Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ, Hedge RS (2007) The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell 18:3681–3691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook JF (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61:197–199

    CAS  PubMed  Google Scholar 

  • Schäfer A, Wolf DH (2009) Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 28:2874–2884

    PubMed Central  PubMed  Google Scholar 

  • Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, Linxweiler J, Dudek J, Blum R, Helms V, Paton A W, Paton J C, Cavalié A, Zimmermann R (2012) BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 31:3282–3296

    PubMed Central  PubMed  Google Scholar 

  • Schekman R (2004) Merging cultures in the study of membrane traffic. Nature Cell Biol 6:483–486

    CAS  PubMed  Google Scholar 

  • Schekman R (2005) Peroxisomes: Another branch of the secretory pathway? Cell 122:1–7

    CAS  PubMed  Google Scholar 

  • Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18:345–351

    CAS  PubMed  Google Scholar 

  • Schulmann K, Brasch FE, Kunstmann E, Engel C, Pagenstecher C, Vogelsang H, Krüger S, Vogel T, Knaebel H-P, Rüschoff J, Hahn SA, von Knebel-Doeberitz M, Moeslein G, Meltzer SJ, Schackert HK, Tympner C, Mangold E, Schmiegel W for the German HNPCC consortium (2005) HNPCC-associated small bowel cancer: Clinical and molecular characteristics. Gastroenterol 128:590–599

    CAS  Google Scholar 

  • Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudinik-Schoneborn S, Blaschek A, Wolf N, Harting I, North K, Smith J, Muntoni F, Brockington M, Quijano-Roy S, Renault F, Herrmann R, Hendeshot LM, Schröder JM, Lochmüller H, Topaloglu H, Voit T, Weis J, Ebinger F, Zerres K (2005) Mutations in Sil1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Gen 37:1312–1314

    CAS  Google Scholar 

  • Shaffer KL, Sharma A, Snapp EL, Hegde RS (2005) Regulation of protein compartmentalization expands the diversity of protein function. Dev Cell 9:545–554

    CAS  PubMed  Google Scholar 

  • Shen Y, Hendershot LM (2005) ERdj3p, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol Biol Cell 16:40–50

    PubMed  Google Scholar 

  • Shen Y, Meunier L, Hendershot LM (2002) Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J Biol Chem 277:15947–15956

    CAS  PubMed  Google Scholar 

  • Shi Y, Vattem K M, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiu RP, Pouyssegur J, Pasta I (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibrobalsts. Proc Natl Acad Sci U S A 74:3840–3844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    CAS  PubMed  Google Scholar 

  • Skowronek MH, Rotter M, Haas IG (1999) Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 380:1133–1138

    CAS  PubMed  Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    CAS  PubMed  Google Scholar 

  • Svärd, M, Biterova EI, Bourhis J-M, Guy JE (2011) The crystal structure of the human co-chaperone P58IPK. PloS One 6:e22337

    PubMed Central  PubMed  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biol 13:184–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatu U, Helenius A (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 136:555–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thibault G, Ng DTW (2012) The ERAD pathways of budding yeast. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a013193

    Google Scholar 

  • Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinas/endoribonuclease (Ire1p) in mammalian cells. Genes Develop 12:1812–1824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, Heim N, Nastainczyk W, Volkmer J, Zimmermann R (2000) Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci U S A 97:7214–7219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R (2003) Polypeptide chain binding proteins mediate completion of cotranslational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep 4:505–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572

    CAS  PubMed  Google Scholar 

  • Van PN, Peter F, Söling H-D (1989) Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 264:17494–17501

    Google Scholar 

  • Van Coppenolle F, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N (2004) Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 117:4135–4142

    CAS  PubMed  Google Scholar 

  • van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    PubMed  Google Scholar 

  • Wang X, Johnsson N (2005) Protein kinase CK2 phosphorylates Sec63p to stimulate the assembly of the endoplasmic reticulum protein translocation apparatus. J Cell Sci 118:723–732

    CAS  PubMed  Google Scholar 

  • Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress response. EMBO J 17:5708–5717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weitzmann A, Volkmer J, Zimmermann R (2006) The nucleotide exchange factor activity of Grp170 may explain the non-lethal phenotype of loss of Sil1 function in man and mouse. FEBS Lett 580:5237–5240

    CAS  PubMed  Google Scholar 

  • Weitzmann A, Baldes C, Dudek J, Zimmermann R (2007) The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum—a quantitative approach. FEBS J 274:5175–5187

    CAS  PubMed  Google Scholar 

  • Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    CAS  PubMed  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) XBP1 Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional iduction of mammalian glucose-regulated proteins: involvement of basic-leucine zipper transcription factors. J Biol Chem 273:33741–33749

    CAS  PubMed  Google Scholar 

  • Yu M, Haslam RHA, Haslam DB (2000) HEDJ, an Hsp40 Co-chaperone localized to the endoplasmic reticulum of human cells. J Biol Chem 275:24984–24992

    CAS  PubMed  Google Scholar 

  • Zahedi RP, Völzing C, Schmitt A, Frien M, Jung M, Dudek J, Wortelkamp S, Sickmann A, Zimmermann R (2009) Analysis of the membrane proteome of canine pancreatic rough microsomes identifies a novel Hsp40, termed ERj7. Proteomics 9:3463–3473

    CAS  PubMed  Google Scholar 

  • Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    CAS  PubMed  Google Scholar 

  • Zhao L, Rosales C, Seburn K, Ron D, Ackerman S L (2010) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjögren syndrome. Human Mol Gen 19:25–35

    Google Scholar 

  • Zimmermann R, Eyrisch S, Ahmad M, Helms V (2011) Protein translocation across the ER membrane. Biochim Biophys Acta 1808:912–924

    CAS  PubMed  Google Scholar 

  • Zupicich J, Brenner SE, Skarnes WC (2001) Computational prediction of membrane-tethered transcription factors. Genome Biol 2:501–506

    Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Roland Beckmann (Munich), Gregory L. Blatch (Melbourne, Australia), Adolfo Cavalié (Homburg), Johanna Dudek (Homburg), Friedrich Förster (Martinsried), Markus Greiner (Homburg), Volkhard Helms (Saarbrücken), Stephen High (Manchester, UK), Martin Jung (Homburg), James C. Paton (Adelaide, Australia) Stefan Pfeffer (Martinsried), Albert Sickmann (Dortmund), Jörg Tatzelt (Bochum), Richard Wagner (Osnabrück), and René P. Zahedi (Dortmund) for many years of fruitful collaborations. This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melnyk, A., Rieger, H., Zimmermann, R. (2015). Co-chaperones of the Mammalian Endoplasmic Reticulum. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_9

Download citation

Publish with us

Policies and ethics