Advertisement

Formal Analysis of DAA-Related APIs in TPM 2.0

  • Li Xi
  • Dengguo Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8792)

Abstract

Direct Anonymous Attestation (DAA) is a signature scheme that provides a balance between user privacy and authentication in a reasonable way. Various DAA schemes are now supported by the latest TPM 2.0 specification. We propose a general symbolic model for DAA schemes and formalize DAA-related APIs in TPM 2.0 specification in applied pi calculus. We present new symbolic definitions of user-controlled traceability and non-frameability. Then we propose a novel property of DAA called forward anonymity. The application of our definitions is demonstrated by analyzing the implementation of an ECC-based DAA protocol using APIs proposed by the TPM 2.0 specification. Our analysis finds a weakness in an API which leads to attack against forward anonymity. We propose modifications to the API and verify our properties for the modified API.

Keywords

Signature Scheme Security Protocol Trust Platform Module Primary Seed Valid Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, pp. 132–145. ACM (2004)Google Scholar
  2. 2.
    Trusted Computing Group: TCG TPM specification 1.2 (2003), https://www.trustedcomputinggroup.org
  3. 3.
    Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) TRUST 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Feng, D.: Direct anonymous attestation for next generation tpm. Journal of Computers 3(12), 43–50 (2008)MathSciNetGoogle Scholar
  5. 5.
    Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attestation and a concrete scheme from pairings. International Journal of Information Security 8(5), 315–330 (2009)CrossRefGoogle Scholar
  8. 8.
    Trusted Computing Group: TCG TPM specification 2.0 (2012), https://www.trustedcomputinggroup.org
  9. 9.
    Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 37–48. ACM (2013)Google Scholar
  10. 10.
    Chen, L., Morrissey, P., Smart, N.P.: On proofs of security for DAA schemes. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 156–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Backes, Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and automated verification of the direct anonymous attestation protocol. In: 29th IEEE Symposium on Security and Privacy, pp. 202–215. IEEE Computer Society (2008)Google Scholar
  12. 12.
    Smyth, B., Ryan, M., Chen, L.: Formal analysis of anonymity in ECC-based direct anonymous attestation schemes. In: Barthe, G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 245–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols. Technical report, Cryptology ePrint Archive, Report 2009/198 (2009)Google Scholar
  14. 14.
    Chen, L., Ryan, M.: Attack, solution and verification for shared authorisation data in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 201–216. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 111–125. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: CSFW 2001: Proceedings of the 14th IEEE Computer Security Foundations Workshop, pp. 82–96. IEEE Computer Society (2001)Google Scholar
  17. 17.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. ACM SIGPLAN Notices 36, 104–115 (2001)CrossRefGoogle Scholar
  18. 18.
    Ryan, M., Smyth, B.: Formal Models and Techniques for Analyzing Security Protocols, ch. 6. IOS Press (2010)Google Scholar
  19. 19.
    Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for security protocols. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, pp. 331–340. IEEE (2005)Google Scholar
  20. 20.
    Blanchet, B.: Automatic verification of correspondences for security protocols. Journal of Computer Security 17(4), 363–434 (2009)Google Scholar
  21. 21.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Li Xi
    • 1
  • Dengguo Feng
    • 1
  1. 1.Trusted Computing and Information Assurance Laboratory Institute of SoftwareChinese Academy of SciencesChina

Personalised recommendations