Skip to main content

Privacy Preserving Biometrics-Based and User Centric Authentication Protocol

  • Conference paper
Network and System Security (NSS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8792))

Included in the following conference series:

Abstract

We propose a privacy preserving biometrics-based authentication protocol by which users can authenticate to different service providers from their own devices without involving identity providers in the transactions. Authentication is performed through a zero-knowledge proof of knowledge protocol which is based on a cryptographic identity token created using the unique, repeatable and revocable biometric identifier of the user and a secret provided by the user which enables two-factor authentication as well. Our approach for generating biometric identifiers from the user’s biometric image is based on the support vector machine classification technique in conjunction with a mechanism for feature extraction from the biometric image. The paper includes experimental results on a dataset of iris images and a security and privacy analysis of the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IdentityX | World-Class Mobile Biometric Authentication, http://www.identityx.com

  2. UBIRIS, http://iris.di.ubi.pt/

  3. Bhargav-Spantzel, A., Squicciarini, A.C., Bertino, E., Kong, X., Zhang, W.: Biometrics-based identifiers for digital identity management. In: IDtrust 2010 Conference Proceedings. ACM (April 2010)

    Google Scholar 

  4. California State University, East Bay: Coding theory - hadamard codes, http://www.mcs.csueastbay.edu/~malek/TeX/Hadamard.pdf

  5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  6. Kande, S., Dorizzi, B.: Cancelable iris biometrics and using error correcting codes to reduce variability in biometric data. In: Computer Vision and Pattern Recognition. IEEE (April 2009)

    Google Scholar 

  7. Klinger, E., Starkweather, D.: phash.org: Home of pHash, the open source perceptual hash library (2008-2010), http://www.phash.org/

  8. Kostiainen, K., Ekberg, J., Asokan, N., Rantala, A.: On-board credentials with open provisioning. In: Proceedings of ASIACCS 2009 (2009)

    Google Scholar 

  9. Paci, F., Bertino, E., Kerr, S., Lint, A., Squicciarini, A.C., Woo, J.: VeryIDX - A digital identity management system for pervasive computing environments. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 268–279. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  11. Proença, H.: The UBIRIS.v2: A database of visible wavelength images captured on-the-move and at-a-distance. IEEE Trans. PAMI 32(8), 1529–1535 (2010)

    Article  Google Scholar 

  12. Proença, H., Alexandre, L.A.: UBIRIS: A noisy iris image database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley (1996)

    Google Scholar 

  14. Zauner, C.: Implementation and Benchmarking of Perceptual Image Hash Functions. Master’s thesis, Upper Austria University of Applied Sciences, Hagenberg Campus (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gunasinghe, H., Bertino, E. (2014). Privacy Preserving Biometrics-Based and User Centric Authentication Protocol. In: Au, M.H., Carminati, B., Kuo, CC.J. (eds) Network and System Security. NSS 2015. Lecture Notes in Computer Science, vol 8792. Springer, Cham. https://doi.org/10.1007/978-3-319-11698-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11698-3_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11697-6

  • Online ISBN: 978-3-319-11698-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics