Advertisement

Cellular Tree Classifiers

  • Gérard Biau
  • Luc Devroye
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8776)

Abstract

Suppose that binary classification is done by a tree method in which the leaves of a tree correspond to a partition of d-space. Within a partition, a majority vote is used. Suppose furthermore that this tree must be constructed recursively by implementing just two functions, so that the construction can be carried out in parallel by using “cells”: first of all, given input data, a cell must decide whether it will become a leaf or an internal node in the tree. Secondly, if it decides on an internal node, it must decide how to partition the space linearly. Data are then split into two parts and sent downstream to two new independent cells. We discuss the design and properties of such classifiers.

Keywords

Decision Tree IEEE Transaction Binary Tree Majority Vote Internal Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A.C., Fu, K.S.: Design and development of a linear binary tree classifier for leukocytes. Technical Report TR-EE-79-31, Purdue University (1979)Google Scholar
  2. 2.
    Argentiero, P., Chin, R., Beaudet, P.: An automated approach to the design of decision tree classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 4, 51–57 (1982)CrossRefGoogle Scholar
  3. 3.
    Bartolucci, L.A., Swain, P.H., Wu, C.: Selective radiant temperature mapping using a layered classifier. IEEE Transactions on Geosciences and Electronics 14, 101–106 (1976)CrossRefGoogle Scholar
  4. 4.
    Biau, G., Devroye, L.: Cellular tree classifiers. Electronic Journal of Statistics 7, 1875–1912 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)zbMATHGoogle Scholar
  6. 6.
    Chou, P.A.: Optimal partitioning for classification and regression trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 340–354 (1991)CrossRefGoogle Scholar
  7. 7.
    Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Friedman, J.H.: A tree-structured approach to nonparametric multiple regression. In: Gasser, T., Rosenblatt, M. (eds.) Smoothing Techniques for Curve Estimation. Lecture Notes in Mathematics, vol. 757, pp. 5–22. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  9. 9.
    Gelfand, S.B., Delp, E.J.: On tree structured classifiers. In: Sethi, I.K., Jain, A.K. (eds.) Artificial Neural Networks and Statistical Pattern Recognition, Old and New Connections, pp. 71–88. Elsevier Science Publishers, Amsterdam (1991)Google Scholar
  10. 10.
    Gelfand, S.B., Ravishankar, C.S., Delp, E.J.: An iterative growing and pruning algorithm for classification tree design. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 163–174 (1991)CrossRefGoogle Scholar
  11. 11.
    Gey, S., Nédélec, E.: Model selection for CART regression trees. IEEE Transactions on Information Theory 51, 658–670 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gordon, L., Olshen, R.A.: Asymptotically efficient solutions to the classification problem. The Annals of Statistics 6, 515–533 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guo, H., Gelfand, S.B.: Classification trees with neural network feature extraction. IEEE Transactions on Neural Networks 3, 923–933 (1992)CrossRefGoogle Scholar
  14. 14.
    Gustafson, D.E., Gelfand, S., Mitter, S.K.: A nonparametric multiclass partitioning method for classification. In: Proceedings of the Fifth International Conference on Pattern Recognition, pp. 654–659 (1980)Google Scholar
  15. 15.
    Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hartmann, C.R.P., Varshney, P.K., Mehrotra, K.G., Gerberich, C.L.: Application of information theory to the construction of efficient decision trees. IEEE Transactions on Information Theory 28, 565–577 (1982)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kurzynski, M.W.: The optimal strategy of a tree classifier. Pattern Recognition 16, 81–87 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lin, Y.K., Fu, K.S.: Automatic classification of cervical cells using a binary tree classifier. Pattern Recognition 16, 69–80 (1983)CrossRefGoogle Scholar
  19. 19.
    Loh, W.Y., Vanichsetakul, N.: Tree-structured classification via generalized discriminant analysis. Journal of the American Statistical Association 83, 715–728 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Meisel, W.S., Michalopoulos, D.A.: A partitioning algorithm with application in pattern classification and the optimization of decision trees. IEEE Transactions on Computers 22, 93–103 (1973)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mui, J.K., Fu, K.S.: Automated classification of nucleated blood cells using a binary tree classifier. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 429–443 (1980)CrossRefGoogle Scholar
  22. 22.
    Park, Y., Sklansky, J.: Automated design of linear tree classifiers. Pattern Recognition 23, 1393–1412 (1990)CrossRefGoogle Scholar
  23. 23.
    Payne, H.J., Meisel, W.S.: An algorithm for constructing optimal binary decision trees. IEEE Transactions on Computers 26, 905–916 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Qing-Yun, S., Fu, K.S.: A method for the design of binary tree classifiers. Pattern Recognition 16, 593–603 (1983)CrossRefzbMATHGoogle Scholar
  25. 25.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  26. 26.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  27. 27.
    Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World Scientific, Singapore (2008)Google Scholar
  28. 28.
    Samet, H.: The quadtree and related hierarchical data structures. Computing Surveys 16, 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading (1990)Google Scholar
  30. 30.
    Sethi, I.K., Chatterjee, B.: Efficient decision tree design for discrete variable pattern recognition problems. Pattern Recognition 9, 197–206 (1977)CrossRefGoogle Scholar
  31. 31.
    Shlien, S.: Multiple binary decision tree classifiers. Pattern Recognition 23, 757–763 (1990)CrossRefGoogle Scholar
  32. 32.
    Simon, H.U.: The Vapnik-Chervonenkis dimension of decision trees with bounded rank. Information Processing Letters 39, 137–141 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Suen, C.Y., Wang, Q.R.: Large tree classifier with heuristic search and global training. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 91–101 (1987)Google Scholar
  34. 34.
    Swain, P.H., Hauska, H.: The decision tree classifier: Design and potential. IEEE Transactions on Geosciences and Electronics 15, 142–147 (1977)CrossRefGoogle Scholar
  35. 35.
    Wang, Q.R., Suen, C.Y.: Analysis and design of a decision tree based on entropy reduction and its application to large character set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 406–417 (1984)CrossRefzbMATHGoogle Scholar
  36. 36.
    You, K.C., Fu, K.S.: An approach to the design of a linear binary tree classifier. In: Proceedings of the Symposium of Machine Processing of Remotely Sensed Data, West Lafayette, pp. 3A-1–3A-10. Purdue University (1976)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gérard Biau
    • 1
    • 2
  • Luc Devroye
    • 3
  1. 1.Sorbonne Universités, UPMC Univ Paris 06France
  2. 2.Institut universitaire de FranceFrance
  3. 3.McGill UniversityCanada

Personalised recommendations