Learning Regular Omega Languages

  • Dana Angluin
  • Dana Fisman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8776)


We provide an algorithm for learning an unknown regular set of infinite words, using membership and equivalence queries. Three variations of the algorithm learn three different canonical representations of omega regular languages, using the notion of families of dfas. One is of size similar to L $, a dfa representation recently learned using L* [7]. The second is based on the syntactic forc, introduced in [14]. The third is introduced herein.We show that the second can be exponentially smaller than the first, and the third is at most as large as the first two, with up to a quadratic saving with respect to the second.


Regular Language Canonical Representation Acceptance Condition Membership Query Equivalence Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java classes. In: POPL, pp. 98–109 (2005)Google Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arnold, A.: A syntactic congruence for rational omega-languages. Theor. Comput. Sci. 39, 333–335 (1985)CrossRefzbMATHGoogle Scholar
  4. 4.
    Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    de la Higuera, C., Janodet, J.-.C.: Inference of [omega]-languages from prefixes. Theor. Comput. Sci. 313(2), 295–312 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending automated compositional verification to the full class of omega-regular languages. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Jayasrirani, M., Humrosia Begam, M., Thomas, D.G., Emerald, J.D.: Learning of bi-languages from factors. Machine Learning Research Jour. 21, 139–144 (2012)Google Scholar
  9. 9.
    Jürgensen, H., Thierrin, G.: On-languages whose syntactic monoid is trivial. International Journal of Parallel Programming 12(5), 359–365 (1983)zbMATHGoogle Scholar
  10. 10.
    Klarlund, N.: A homomorphism concept for omega-regularity. In: 8th Inter. Conf. on Computer Science Logic (CSL), pp. 471–485 (1994)Google Scholar
  11. 11.
    Leucker, M.: Learning meets verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Lindner, R., Staiger, L.: Eine Bemerkung über nichtkonstantenfreie sequentielle operatoren. Elektronische Informationsverarbeitung und Kybernetik 10(4), 195–202 (1974)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118(2), 316–326 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Maler, O., Staiger, L.: On syntactic congruences for omega-languages. Theor. Comput. Sci. 183(1), 93–112 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Information and Control 9, 521–530 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Michel, M.: Complementation is much more difficult with automata on infinite words. In: Manuscript, CNET (1988)Google Scholar
  17. 17.
    Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verification by learning assumptions. FMSD 32(3), 207–234 (2008)zbMATHGoogle Scholar
  18. 18.
    Pfleeger, C.F.: State reduction in incompletely specified finite-state machines. IEEE Transactions on Computers 22(12), 1099–1102 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Saoudi, A., Yokomori, T.: Learning local and recognizable omega-languages and monadic logic programs. In: EUROCOLT. LNCS, vol. 1121, pp. 50–59. Springer (1993)Google Scholar
  20. 20.
    Staiger, L.: Finite-state omega-languages. J. Comput. Syst. Sci. 27(3), 434–448 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Trakhtenbrot, B.: Finite automata and monadic second order logic. Siberian Math. J., 103–131 (1962)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dana Angluin
    • 1
  • Dana Fisman
    • 2
  1. 1.Yale UniversityNew HavenUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations