Skip to main content

A New Way to Model Physics-Based Topology Transformations: Splitting MAT

  • Conference paper
Smart Graphics (SG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8698))

Included in the following conference series:

  • 1355 Accesses

Abstract

This work focuses modelling and simulation of physics-based topological discontinuities in deformable objects, as they appear in fracturing, tearing or cracking phenomena. It introduces a new methodology, called “Splitting MAT”, which integrates into masses-interactions modelling. This methodology enables modelling topological discontinuities not on an interaction element, but directly on a mass element. The principles of the Splitting MAT method are presented and then illustrated through various models featuring topological transformations due to large physics based deformations. The properties of the method are analyzed: optimization of the modelling process of topological transformations, and fully stable memory and computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical Modelling and Animation of Ductile Fracture. ACM Transactions Graphics 21(3), 291–294 (2002)

    Google Scholar 

  2. Molino, N., Bao, Z., Fedkiw, R.: A Virtual Node Algorithm for Changing Mesh Topology During Simulation. In: Proc. of SIGGRAPH 2004, ACM TOG, vol. 23, pp. 385–392 (2004)

    Google Scholar 

  3. Bao, Z., Hong, J.M., Teran, J., Fedkiw, R.: Fracturing Rigid Materials. IEEE Transactions on Visualization and Computer Graphics 13, 370–378 (2007)

    Article  Google Scholar 

  4. Glondu, L., Marchal, M., Dumont, G.: Real-Time Simulation of Brittle Fracture using Modal Analysis. IEEE Transactions on Visualization and Computer Graphics 19(2), 201–209 (2013)

    Article  Google Scholar 

  5. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point Based Animation of Elastic Plastic and Melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2004, pp. 141–151 (2004)

    Google Scholar 

  6. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Transactions Graphics 24(3), 957–964 (2005)

    Article  Google Scholar 

  7. Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Computer Graphics Forum 19(3), 271–281 (2000)

    Article  Google Scholar 

  8. Meseure, P., Darles, E., Skapin, X.: Topology-based Physical Simulation. In: Proc. of VRIPHYS 2010, Copenhagen, DK, pp. 1–10 (November 2010)

    Google Scholar 

  9. Fléchon, E., Zara, F., Damiand, G., Jaillet, F.: A generic topological framework for physical simulation. In: 21st International Conference on Computer Graphics, Visualization and Computer Vision, pp. 104–113 (2013)

    Google Scholar 

  10. Miller, G., Pearce, A.: Globular Dynamics: a Connected Particle System for Animating Viscous Fluids. Computers & Graphics 23(3), 169–178 (1989)

    Google Scholar 

  11. Tonnesen, D.L.: Modelling Liquids and Solids using Thermal Particles. In: Graphics Interface 1991, pp. 255–262 (1991)

    Google Scholar 

  12. Luciani, A., Jimenez, S., Florens, J.L., Cadoz, C., Raoult, O.: Computational physics: A modeler simulator for animated physical objects. In: Proc. of the Eurographics 1991 (1991)

    Google Scholar 

  13. Luciani, A., Godard, A.: Simulation of Physical Object Construction Featuring Irreversible State Changes. In: Proceedings of WSCG, pp. 321–330 (1997)

    Google Scholar 

  14. Greenspan, D.: Particle Modeling. Birkhauser (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kalantari, S., Luciani, A., Castagné, N. (2014). A New Way to Model Physics-Based Topology Transformations: Splitting MAT. In: Christie, M., Li, TY. (eds) Smart Graphics. SG 2014. Lecture Notes in Computer Science, vol 8698. Springer, Cham. https://doi.org/10.1007/978-3-319-11650-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11650-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11649-5

  • Online ISBN: 978-3-319-11650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics