Skip to main content

Laser Spectroscopy Using Topological Light Beams

  • Chapter
  • First Online:
Progress in Nanophotonics 3

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 948 Accesses

Abstract

Simplifications of systems are important for understanding their universal and/or intrinsic properties. Topology is one of the key concepts of such procedures, which focuses simply on the connectivity of the system to clarify the essential aspects of the geometric structures. To date, this concept has been extended to the field of physics, especially to the condensed matter physics and materials science. For example, topological defects have been observed in various materials, such as liquid crystals, superconductors, and electron gas systems in semiconductors. More recently, photoexcitations to some specific materials (mainly semiconductor nanostructures) have also revealed formation of topological defects. On the other hand, optical field itself includes a topological character, which has been well known as “optical or polarization vortex”, “twisted light”, and “helical or Laguerre-Gauss light” beams. These topological light beams exhibit spiral (spatial) variations of the phase (polarization) producing phase (polarization) singularities on the wavefront, which can be regarded as topological defects (screw dislocations). Therefore, we have possibilities to evaluate the topological aspects of material system on the interactions with topological light beams. However, the question arises: does it make any sense to apply the topological concept to the laser spectroscopy? The purpose of this chapter is to answer the question by introducing our recent research on this topic. Experimental results will be presented and discussed in terms of topological order of electrons. The chapter begins with the basics of topological light beams together with their important properties for laser spectroscopy (Sect. 3.1). Both the historical background and the overview of applications will also be introduced. In Sects. 3.2 and 3.3, we present several techniques for generating and evaluating the topological light beams, which are useful and needed in the experimental sections. We also discuss their advantages and drawbacks. In Sects. 3.4 and 3.5, we present our experimental results on nonlinear four-wave-mixing and pump-probe reflection spectroscopy, respectively. In both cases, the spatial characteristics of the topological light beams allow us to investigate unique properties associated with topologically-ordered electrons in materials. Section 3.6 summarizes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  2. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, N. Fukuchi, Mode purities of Laguerre-Gaussian beams generated via complex-amplitudemodulation using phase-only spatial light modulators. Opt. Lett. 34, 34–36 (2009)

    Article  Google Scholar 

  3. J.T. Barreiro, N.K. Langford, N.A. Peters, P.G. Kwiat, Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  4. M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)

    Article  ADS  Google Scholar 

  5. M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen, J.P. Woerdman, Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994)

    Article  ADS  Google Scholar 

  6. M.V. Berry, M.R. Dennis, Jr. R L. Lee, Polarization singularities in the clear sky. New J. Phys. 6, 162 (2004)

    Google Scholar 

  7. Z. Bouchal, R. Celechovsky Mixed vortex states of light as information carriers. New J. Phys. 6, 131 (2004)

    Google Scholar 

  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  9. M. Brambilla, F. Battipede, L.A. Lugiato, V. Penna, F. Prati, C. Tamm, C.O. Weiss, Transverse laser patterns. i. phase singularity crystals. Phys. Rev. A 43, 5090–5113 (1991)

    Article  ADS  Google Scholar 

  10. S. Bretschneider, C. Eggeling, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007)

    Article  ADS  Google Scholar 

  11. A.V. Carpentier, H. Michinel, J.R. Salgueiro, D. Olivieri, Making optical vortices with computer-generated holograms. Am J Phys. 76, 916–921 (2008)

    Google Scholar 

  12. I. Carusotto, C. Ciuti, Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)

    Article  ADS  Google Scholar 

  13. R. Celechovsky, Z. Bouchal, Optical implementation of the vortex information channel. New J. Phys. 9, 328 (2007)

    Article  ADS  Google Scholar 

  14. M.A. Cibula, D.H. McIntyre, General algorithm to optimize the diffraction efficiency of a phase-type spatial light modulator. Opt. Lett. 38, 2767–2769 (2013)

    Article  ADS  Google Scholar 

  15. J. Demsar, K. Biljakovic, D. Mihailovic, Single particle and collective excitations in the one-dimensional charge density wave solid k0.3moo3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett. 83, 800–803 (1999)

    Article  ADS  Google Scholar 

  16. V. Denisenko, V. Shvedov, A.S. Desyatnikov, D.N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, Y.S. Kivshar, Determination of topological charges of polychromatic optical vortices. Opt. Express 17, 23374–23379 (2009)

    Article  ADS  Google Scholar 

  17. S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299–313 (2008)

    Article  Google Scholar 

  18. G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, S. Franke-Arnold, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)

    Article  ADS  Google Scholar 

  19. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, Optical-vortex laser ablation. Opt. Express 18, 2144–2151 (2010)

    Article  ADS  Google Scholar 

  20. M. Harris, C.A. Hill, P.R. Tapster, J.M. Vaughan, Laser modes with helical wave fronts. Phys. Rev. A 49, 3119–3122 (1994)

    Article  ADS  Google Scholar 

  21. N.R. Heckenberg, R. McDuff, C.P. Smith, A.G. White, Generation of optical-phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992)

    Article  ADS  Google Scholar 

  22. S.W. Hell, Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003)

    Article  Google Scholar 

  23. G. Indebetouw, Optical vortices and their propagation. J. Mod. Opt. 40, 73–87 (1993)

    Article  ADS  Google Scholar 

  24. J. Jimenez, Y. Noblet, P.V. Paulau, D. Gomila, T. Ackemann, Observation of laser vortex solitons in a self-focusing semiconductor laser. J. Opt. 15, 044011 (2013)

    Article  ADS  Google Scholar 

  25. Y. Keisaku, Y. Zhili, T. Yasunori, M. Ryuji, Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction. New J. Phys. 16, 053020 (2014)

    Article  Google Scholar 

  26. J.W. Kim, J.I. Mackenzie, J.R. Hayes, W.A. Clarkson, High power er:yag laser with radially-polarized Laguerre-Gaussian (lg01) mode output. Opt. Express 19, 14526–14531 (2011)

    Article  ADS  Google Scholar 

  27. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, Nanosecond vortex laser pulses with millijoule pulse energies from a yb-doped double-clad fiber power amplifier. Opt. Express 19, 14420–14425 (2011)

    Article  ADS  Google Scholar 

  28. S. Kyohhei, T. Yasunori, Y. Keisaku, M. Ryuji, Orbital angular momentum spectral dynamics of gan excitons excited by optical vortices. Jpn. J. Appl. Phys. 52, 08JL08 (2013)

    Google Scholar 

  29. J. Leach, M.R. Dennis, J. Courtial, M.J. Padgett, Vortex knots in light. New J. Phys. 7, 55 (2005)

    Article  ADS  Google Scholar 

  30. L.A. Lugiato, F. Prati, L.M. Narducci, G.L. Oppo, Spontaneous breaking of the cylindrical symmetry in lasers. Opt. Commun. 69, 387–392 (1989)

    Article  ADS  Google Scholar 

  31. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    Article  ADS  Google Scholar 

  32. T. Matsuura, K. Inagaki, S. Tanda, Evidence of circulating charge density wave current: shapiro interference in nbse3 topological crystals. Phys. Rev. B 79, 014304 (2009)

    Article  ADS  Google Scholar 

  33. P. Monceau, Electronic crystals: an experimental overview. Adv. Phys. 61, 325–581 (2012)

    Article  ADS  Google Scholar 

  34. Y. Mushiake, K. Matsumura, N. Nakajima, Generation of radially polarized optical beam mode by laser oscillation. Proc. IEEE. 60, 1107–1109 (1972)

    Article  Google Scholar 

  35. J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A: Math. Phys. Sci. 336, 165–190 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. M.J. Padgett, L. Allen, The poynting vector in Laguerre-Gaussian laser modes. Opt. Commun. 121, 36–40 (1995)

    Article  ADS  Google Scholar 

  37. D. Pohl, Operation of a ruby laser in the purely transverse electric mode TE 01. Appl. Phys. Lett. 20, 266–267 (1972)

    Article  ADS  Google Scholar 

  38. D. Rozas, Z.S. Sacks, G.A. Swartzlander, Experimental observation of fluidlike motion of optical vortices. Phys. Rev. Lett. 79, 3399–3402 (1997)

    Article  ADS  Google Scholar 

  39. J. Sato, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, Simple annular-beam generator with a laser-diode-pumped axially off-set power build-up cavity. Opt. Commun. 277, 342–348 (2007)

    Article  ADS  Google Scholar 

  40. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, vol. 115. (Springer, Cambridge 1999)

    Google Scholar 

  41. K. Shimatake, Y. Toda, S. Tanda, Selective optical probing of the charge-density-wave phases in nbse3. Phys. Rev. B 75, 115120 (2007)

    Article  ADS  Google Scholar 

  42. M. Stalder, M. Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21, 1948–1950 (1996)

    Article  ADS  Google Scholar 

  43. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatakenaka, Crystal topology: a möbius strip of single crystals. Nature 417, 397–398 (2002)

    Google Scholar 

  44. Y. Toda, K. Shigematsu, K. Yamane, R. Morita, Efficient Laguerre-Gaussian mode conversion for orbital angular momentum resolved spectroscopy. Opt. Commun. 308, 147–151 (2013)

    Article  ADS  Google Scholar 

  45. Y. Tokizane, K. Oka, R. Morita, Supercontinuum optical vortex pulse generation without spatial ortopological-charge dispersion. Opt. Express 17, 14517–14525 (2009)

    Article  ADS  Google Scholar 

  46. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, R. Morita, Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices. Opt. Express 17, 24198–24207 (2009)

    Article  ADS  Google Scholar 

  47. L. Torner, J.P. Torres, S. Carrasco, Digital spiral imaging. Opt. Express 13, 873–881 (2005)

    Article  ADS  Google Scholar 

  48. M. Tsubota, K. Inagaki, T. Matsuura, S. Tanda, Aharonov-bohm effect in charge-density wave loops with inherent temporal current switching. Europhys. Lett. 97, 57011 (2012)

    Article  ADS  Google Scholar 

  49. R.K. Tyson, M. Scipioni, J. Viegas, Generation of an optical vortex with a segmented deformable mirror. Appl. Opt. 47, 6300–6306 (2008)

    Article  ADS  Google Scholar 

  50. Y. Ueno, Y. Toda, S. Adachi, R. Morita, T. Tawara, Coherent transfer of orbital angular momentum to excitons by opticalfour-wave mixing. Opt. Express 17, 20567–20574 (2009)

    Article  ADS  Google Scholar 

  51. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  52. K. Yamane, Y. Toda, R. Morita, Ultrashort optical-vortex pulse generation in few-cycle regime. Opt. Express 20, 18986–18993 (2012)

    Article  ADS  Google Scholar 

  53. Y. Yoshikawa, H. Sasada, Versatile generation of optical vortices based on paraxial mode expansion. J. Opt. Soc. Am. A 19, 2127–2133 (2002)

    Article  ADS  Google Scholar 

  54. K. Youngworth, T. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  55. Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Yamane, Prof. Adachi, Prof. Oka, and Prof. Tanda (preparation of topological crystals in Sect. 3.5). We also wish to express our thanks to graduate and under-graduate students in our laboratory; Dr. Tokizane, Mr. Suzuki (Ph.D. student) and Mr. Shigematsu (PhD student).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Toda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toda, Y., Morita, R. (2015). Laser Spectroscopy Using Topological Light Beams. In: Ohtsu, M., Yatsui, T. (eds) Progress in Nanophotonics 3. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-11602-0_3

Download citation

Publish with us

Policies and ethics