Advertisement

Processing Private Queries over an Obfuscated Database Using Hidden Vector Encryption

  • Alberto Trombetta
  • Giuseppe Persiano
  • Stefano Braghin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8788)

Abstract

Outsourcing data in the cloud has become nowadays very common. Since – generally speaking – cloud data storage and management providers cannot be fully trusted, mechanisms providing the confidentiality of the stored data are necessary. A possible solution is to encrypt all the data, but – of course – this poses serious problems about the effective usefulness of the stored data. In this work, we propose to apply a well-known attribute-based cryptographic scheme to cope with the problem of querying encrypted data. We have implemented the proposed scheme with a real-world, off-the-shelf RDBMS and we provide several experimental results showing the feasibility of our approach.

Keywords

Attribute Vector Data Owner Encrypt Data Homomorphic Encryption Query Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Cryptology 26(2), 191–224 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Samarati, P., de Capitani di Vimercati, S.: Data protection in outsourcing scenarios: issues and directions. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS), Beijing, China, pp. 1–14 (2010)Google Scholar
  4. 4.
    Davida, G.I., Wells, D.L., Kam, J.B.: A database encryption system with subkeys. ACM Trans. Database Syst. 6(2), 312–328 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bayer, R., Metzger, J.K.: On the encipherment of search trees and random access files. ACM Trans. Database Syst. 1(1), 37–52 (1976)CrossRefGoogle Scholar
  6. 6.
    Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing sql over encrypted data in the database-service-provider model. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 216–227 (2002)Google Scholar
  7. 7.
    Bajaj, S., Sion, R.: Trusteddb: A trusted hardware based outsourced database engine. PVLDB 4(12), 1359–1362 (2011)Google Scholar
  8. 8.
    Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting confidentiality with encrypted query processing. In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP), pp. 85–100 (2011)Google Scholar
  9. 9.
    Corp. Oracle: Oracle advences security transparent data encryption best practices. White paper (2012)Google Scholar
  10. 10.
    Shmueli, E., Vaisenberg, R., Elovici, Y., Glezer, C.: Database encryption: an overview of contemporary challenges and design considerations. SIGMOD Record 38(3), 29–34 (2009)CrossRefGoogle Scholar
  11. 11.
    Bouganim, L., Guo, Y.: Database encryption. In: Encyclopedia of Cryptography and Security, 2nd edn., pp. 307–312 (2011)Google Scholar
  12. 12.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, pp. 169–178 (2009)Google Scholar
  13. 13.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Zheng, Q., Xu, S., Ateniese, G.: Vabks: Verifiable attribute-based keyword search over outsourced encrypted data. IACR Cryptology ePrint Archive 2013 (2013)Google Scholar
  17. 17.
    Samarati, P., de Capitani di Vimercati, S.: Access control: Policies, models, and mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-S.: Concepts and languages for privacy-preserving attribute-based authentication. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT, vol. 396, pp. 34–52. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Gasarch, W.I.: A survey on private information retrieval (column: Computational complexity). Bulletin of the EATCS 82, 72–107 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alberto Trombetta
    • 1
  • Giuseppe Persiano
    • 2
  • Stefano Braghin
    • 3
  1. 1.DiSTAUniversity of InsubriaVareseItaly
  2. 2.Università di Salerno, DISalernoItaly
  3. 3.Smarter Cities Technology CentreIBM Research – IrelandDublinIreland

Personalised recommendations