Static Semantics of Secret Channel Abstractions

  • Marco Giunti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8788)


The secret π-calculus extends the π-calculus by adding an hide operator that permits to declare channels as secret. The main aim is confidentiality, which is gained by restricting the access of the object of the communication. Communication channels protected by hide are more secure since they have static scope and do not allow the context’s interaction, and can be implemented as dedicated channels. In this paper, we present static semantics of secret channel abstractions by introducing a type system that considers two type modalities for channels (scope): static and dynamic. We show that secret π-calculus channels protected by hide can be represented in the π-calculus by prescribing a static type modality. We illustrate the feasibility of our approach by introducing a security API for message-passing communication which works for a standard (π-calculus) middleware while featuring secret channels. Interestingly, we just require the programmer to declare which channels are meant to be secret, leaving the burden of managing the security type abstractions to the API compiler.


Input Process Static Semantic Type Environment Return Type Return Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M.: Protection in programming-language translations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 868–883. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic programs. J. ACM 52(1), 102–146 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM Trans. Inf. Syst. Secur. 10(3) (2007)Google Scholar
  4. 4.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL, pp. 104–115. ACM Press (2001)Google Scholar
  5. 5.
    Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Inf. Comput. 148(1), 1–70 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barendregt, H.: The Lambda Calculus - Its Syntax and Semantics. North-Holland (1981 (1st edn.), revised 1984)Google Scholar
  7. 7.
    Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic processes. SIAM J. Comput. 31(3), 947–986 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bugliesi, M., Giunti, M.: Typed processes in untyped contexts. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 19–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions. In: POPL, pp. 251–262. ACM (2007)Google Scholar
  10. 10.
    Cai, X., Fu, Y.: The λ-calculus in the π-calculus. Math. Struct. Comp. Sci. 21(5), 943–996 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput. 196(2), 127–155 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Castagna, G., Vitek, J., Nardelli, F.Z.: The seal calculus. Inf. Comput. 201(1), 1–54 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Security Protocols, Cryptology and Information Security, vol. 5. IOS Press (2011)Google Scholar
  14. 14.
    Cortier, V., Rusinowitch, M., Zalinescu, E.: Relating two standard notions of secrecy. Logical Methods in Computer Science 3(3) (2007)Google Scholar
  15. 15.
    Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: POPL, pp. 372–385. ACM Press (1996)Google Scholar
  16. 16.
    Giunti, M.: Secure Implementations of Typed Channel Abstractions. PhD Thesis TD-2007-1, Department of Informatics, Ca’ Foscari University of Venice (2007)Google Scholar
  17. 17.
    Giunti, M.: Static semantics of secret channel abstractions, technical report (2014),
  18. 18.
    Giunti, M., Palamidessi, C., Valencia, F.D.: Hide and New in the Pi-Calculus. In: EXPRESS/SOS. EPTCS, vol. 89, pp. 65–79 (2012)Google Scholar
  19. 19.
    Giunti, M., Vasconcelos, V.T.: Linearity, session types and the pi calculus. Math. Struct. Comp. Sci. (2013) (to appear),
  20. 20.
    Google: Application security, (accessed April 2014)
  21. 21.
    Hennessy, M.: The security pi-calculus and non-interference. J. Log. Algebr. Program. 63(1), 3–34 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hennessy, M.: A Distributed Pi-calculus. Cambridge University Press (2007)Google Scholar
  23. 23.
    Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Typing component-based communication systems. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS, vol. 5522, pp. 167–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge University Press (1999)Google Scholar
  25. 25.
    Pennington, H., Carlsson, A., Larsson, A., Herzberg, S., McVittie, S., Zeuthen, D.: D-Bus specification,
  26. 26.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Selected Areas in Communications 21(1), 5–19 (2003)CrossRefGoogle Scholar
  27. 27.
    Sangiorgi, D., Walker, D.: The pi-calculus, a theory of mobile processes. Cambridge University Press (2001)Google Scholar
  28. 28.
    Sewell, P., Vitek, J.: Secure composition of untrusted code: Box pi, wrappers, and causality. J. Comp. Sec. 11(2), 135–188 (2003)Google Scholar
  29. 29.
    Vasconcelos, V.T., Honda, K.: Principal typing schemes in a polyadic π-calculus. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 524–538. Springer, Heidelberg (1993)Google Scholar
  30. 30.
    Vivas, J.-L., Dam, M.: From higher-order π-calculus to π-calculus in the presence of static operators. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 115–130. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marco Giunti
    • 1
  1. 1.CRACS/INESC-TECUniversidade do PortoPortoPortugal

Personalised recommendations