Linked Data - A Paradigm Shift for Geographic Information Science

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8728)


The Linked Data paradigm has made significant inroads into research and practice around spatial information and it is time to reflect on what this means for GIScience. Technically, Linked Data is just data in the simplest possible data model (that of triples), allowing for linking records or data sets anywhere across the web using controlled semantics. Conceptually, Linked Data offers radically new ways of thinking about, structuring, publishing, discovering, accessing, and integrating data. It is of particular novelty and value to the producers and users of geographic data, as these are commonly thought to require more complex data models. The paper explains the main innovations brought about by Linked Data and demonstrates them with examples. It concludes that many longstanding problems in GIScience have become approachable in novel ways, while new and more specific research challenges emerge.


Resource Description Framework Link Data Database Schema Spatial Data Infrastructure Ordnance Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gangemi, A.: Ontology Design Patterns for Semantic Web content. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 262–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bishr, Y.: Overcoming the Semantic and Other Barriers to GIS Interoperability. International Journal of Geographic Information Science 12(4), 299–314 (1998)CrossRefGoogle Scholar
  3. 3.
    Hart, G., Dolbear, C.: Linked Data: A Geographic Perspective. Taylor & Francis (2013)Google Scholar
  4. 4.
    Berners-Lee, T.: Linked Data – Design Issues (2009), (accessed February 3, 2014)
  5. 5.
    Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and geosparql. Semantic Web 3(4), 355–370 (2012)Google Scholar
  6. 6.
    Scheider, S., Jones, J., Sanchez, A., Keß ler, C.: Encoding and querying historic map content. In: AGILE (in press, 2014)Google Scholar
  7. 7.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Francisco (2008)Google Scholar
  8. 8.
    Janowicz, K.: The role of space and time for knowledge organization on the semantic web. Semantic Web 1(1), 25–32 (2010)Google Scholar
  9. 9.
    Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameas isn’t the same: An analysis of identity in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: Prov-o: The prov ontology. W3C Recommendation (April 30, 2013)Google Scholar
  11. 11.
    Smith, B., Brogaard, B.: Sixteen days. The Journal of Medicine and Philosophy 28, 45–78 (2003)CrossRefGoogle Scholar
  12. 12.
    Egenhofer, M., Wilmsen, D.: Changes in topological relations when splitting and merging regions. In: 12th International Symposium on Spatial Data Handling, pp. 339–352. Springer, Vienna (2006)CrossRefGoogle Scholar
  13. 13.
    Kauppinen, T., Hyvönen, E.: Modeling and reasoning about changes in ontology time series. In: Kishore, R., Ramesh, R., Sharman, R. (eds.) Ontologies: A Handbook of Principles, Concepts and Applications in Information Systems. Integrated Series in Information Systems, pp. 319–338. Springer, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Zhao, J., Klyne, G., Shotton, D.: Provenance and linked data in biological data webs. In: The 17th International World Wide Web Conference (LDOW 2008) (2008)Google Scholar
  15. 15.
    Diaz, L., Remke, A., Kauppinen, T., Degbelo, A., Foerster, T., Stasch, C., Rieke, M., Schaeffer, B., Baranski, B., Broering, A., Wytzisk, A.: Future SDI—Impulses from Geoinformatics Research and IT Trends. International Journal of Spatial Data Infrastructures Research 7, 378–410 (2012)Google Scholar
  16. 16.
    Kauppinen, T., de Espindola, G.M., Jones, J., Sánchez, A., Gräler, B., Bartoschek, T.: Linked Brazilian Amazon Rainforest Data. Semantic Web Journal 5(2) (2014)Google Scholar
  17. 17.
    Keßler, C., Janowicz, K., Kauppinen, T.: spatial@linkedscience – Exploring the Research Field of GIScience with Linked Data. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 102–115. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Goodwin, J., Dolbear, C., Hart, G.: Geographical Linked Data: The Administrative Geography of Great Britain on the Semantic Web. Transactions in GIS 12, 19–30 (2008)CrossRefGoogle Scholar
  19. 19.
    Shotton, D.: CiTO, the Citation Typing Ontology. Journal of Biomedical Semantics 1(suppl. 1), S6 (2010)Google Scholar
  20. 20.
    Scharrenbach, T., Bischof, S., Fleischli, S., Weibel, R.: Linked raster data. In: Xiao, N., Kwan, M.P., Goodchild, M.F., Shekhar, S. (eds.) Geographic Information Science. LNCS, vol. 7478, Springer, Heidelberg (2012)Google Scholar
  21. 21.
    Kauppinen, T., Mantegari, G., Paakkarinen, P., Kuittinen, H., Hyvönen, E., Bandini, S.: Determining relevance of imprecise temporal intervals for cultural heritage information retrieval. Int. J. Hum.-Comput. Stud. 68(9), 549–560 (2010)CrossRefGoogle Scholar
  22. 22.
    Trame, J., Keßler, C., Kuhn, W.: Linked data and time–modeling researcher life lines by events. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 205–223. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Temporal RDF. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification? creating meta triples describing triples using singleton propertyGoogle Scholar
  25. 25.
    Bishr, M., Kuhn, W.: Trust and Reputation Models for Quality Assessment of Human Sensor Observations. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 53–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Calbimonte, J.P., Jeung, H., Corcho, Ó., Aberer, K.: Enabling query technologies for the semantic sensor web. International Journal on Semantic Web and Information Systems 8(1), 43–63 (2012)CrossRefGoogle Scholar
  27. 27.
    Jones, J., Kuhn, W., Keßler, C., Scheider, S.: Making the web of data available via web feature services. In: Proceedings of the 17th AGILE Conference on Geographic Information Science, Castellón, Spain (forthcoming, June 2014)Google Scholar
  28. 28.
    Lathrop, D., Ruma, L.: Open government: Collaboration, transparency, and participation in practice. O’Reilly Media, Inc. (2010)Google Scholar
  29. 29.
    Consoli, S., Aldo Gangemi, A.G.N., Silvio Peroni, V.P., Recupero, D.R., Spampinato, D.: Geolinked Open Data for the Municipality of Catania. In: Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics, Thessaloniki, Greece (forthcoming, June 2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Spatial StudiesUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Cognitive Systems GroupUniversität BremenGermany
  4. 4.Department of Media TechnologyAalto University School of ScienceFinland

Personalised recommendations