Scalable Spectral Clustering with Weighted PageRank

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8748)


In this paper, we propose an accelerated spectral clustering method, using a landmark selection strategy. According to the weighted PageRank algorithm, the most important nodes of the data affinity graph are selected as landmarks. The selected landmarks are provided to a landmark spectral clustering technique to achieve scalable and accurate clustering. In our experiments with two benchmark face and shape image data sets, we examine several landmark selection strategies for scalable spectral clustering that either ignore or consider the topological properties of the data in the affinity graph. Finally, we show that the proposed method outperforms baseline and accelerated spectral clustering methods, in terms of computational cost and clustering accuracy, respectively.


Spectral clustering sparse coding databases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data 17(12), 1624–1637 (2005)CrossRefGoogle Scholar
  3. 3.
    Cai, D., He, X., Han, J.: Efficient kernel discriminant analysis via spectral regression. In: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM), Omaha, NE, pp. 427–432 (2007)Google Scholar
  4. 4.
    Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA (2010)Google Scholar
  5. 5.
    Chan, P., Schlag, M., Zien, J.: Spectral k-way ratio cut partitioning. IEEE Transactions on CAD-Integrated Circuit and Systems 13, 1088–1096 (1994)CrossRefGoogle Scholar
  6. 6.
    Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering in distributed systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3), 568–586 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Chai, D.: Large-Scale spectral clustering with landmark-based representation. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI), San Francisco, CA, pp. 313–318 (2011)Google Scholar
  8. 8.
    Chen, W., Feng, G.: Spectral clustering: a semi-supervised approach. Neurocomputing 77, 229–242 (2012)CrossRefGoogle Scholar
  9. 9.
    Dhillon, I., Guan, Y., Kulis, B.: Kernel k-means, spectral clustering and normalized cuts. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, WA, pp. 551–556 (2004)Google Scholar
  10. 10.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004)Google Scholar
  11. 11.
    Härdle, W.: Applied non-parametric regression. Cambridge University Press (1992)Google Scholar
  12. 12.
    Huang, H.-C., Chuang, Y.-Y., Chen, C.S.: Affinity aggregation for spectral clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, pp. 773–780 (2012)Google Scholar
  13. 13.
    Kleinberg, J.: Authoritative sources in a hyper-linked environment. Journal of the ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a kernel approach. Journal of Machine Learning 74, 1–22 (2009)CrossRefGoogle Scholar
  15. 15.
    Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Iso, K.: Speaker clustering using vector quantization and spectral clustering. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, TX, pp. 4986–4989 (2010)Google Scholar
  17. 17.
    Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library. Department of Computer Science, Columbia University, New York, Technical Report CUCS-005-96 (1996)Google Scholar
  19. 19.
    Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.S.: Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition 43(1), 113–127 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Nyström, E.J.: Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben. Acta Mathematica 54, 185–204 (1930)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Paccanaro, A., Chennubhotla, C., Casbon, J.A., Saqi, M.A.S.: Spectral clustering of protein sequences. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Portland, OR, pp. 3083–3088 (2003)Google Scholar
  22. 22.
    Shi, J., Makil, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  23. 23.
    Shim, T., Baker, S.: The CMU pose, illumination and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1615–1617 (2003)CrossRefGoogle Scholar
  24. 24.
    Strehl, A., Gosh, J.: Cluster ensembles: a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning 3, 583–617 (2002)Google Scholar
  25. 25.
    Tatsuma, A., Aono, M.: Multi-Fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval. Visual Computer 25(8), 785–804 (2009)CrossRefGoogle Scholar
  26. 26.
    Tung, F., Wong, A., Clausi, D.A.: Enabling scalable spectral clustering for image segmentation. Pattern Recognition 43(12), 4069–4076 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the 18th International Conference on Machine Learning (ICML), Williamstown, MA (2001)Google Scholar
  28. 28.
    Xing, W., Ghorbani, A.: Weighted PageRank algorithm. In: Proceedings of the 2nd Annual Conference on Communication Networks and Services Research (CNSR), Fredericton, Canada, pp. 305–314 (2004)Google Scholar
  29. 29.
    Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris, France (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations