A Modal Logic of Knowledge, Belief, and Estimation

  • Costas D. Koutras
  • Christos Moyzes
  • Yorgos Zikos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8761)


We introduce KBE, a modal epistemic logic for reasoning about Knowledge, Belief and Estimation, three attitudes involved in an agent’s decision-making process. In our logic, Knowledge and Belief are captured by S4.2, a modal logic holding a distinguished position among the epistemic logics investigated in AI and Philosophy. The Estimation operator of KBE is a kind of generalized ‘many’ or ‘most’ quantifier, whose origins go back to the work of J. Burgess and A. Herzig, but its model-theoretic incarnation (‘weak filters’) has been introduced by K. Schlechta and V. Jauregui. We work with complete weak filters (‘weak ultrafilters’) as we are interested in situations where an estimation can be always reached. The axiomatization of KBE comprises ‘bridge’ axioms which reflect the intuitive relationship of ‘estimation’ to ‘knowledge’ and ‘belief’, several introspective properties are shown to hold and it comes out that believing ϕ can be equivalently defined in KBE as ‘estimating that ϕ is known’, an interesting fact and an indication of the intuitive correctness of the introduced estimation operator. The model theory of KBE comprises a class of frames combining relational Kripke frames with Scott-Montague semantics, in which neighborhoods are collections of ‘large’ sets of possible worlds. Soundness and completeness is mentioned and a tableaux proof procedure is sketched.


Modal Logic Epistemic Logic Conditional Belief Conjunctive Rule Dynamic Epistemic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means ‘most’. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 41–53. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Aucher, G.: Principles of knowledge, belief and conditional belief. In: Rebuschi, M., Batt, M., Heinzmann, G., Lihoreau, F., Musiol, M., Trognon, A. (eds.) Dialogue, Rationality, and Formalism. Logic, Argumentation & Reasoning, vol. 3, Springer (2014)Google Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. (53). Cambridge University Press (2001)Google Scholar
  4. 4.
    Burgess, J.P.: Probability logic. J. Symb. Log. 34(2), 264–274 (1969)CrossRefzbMATHGoogle Scholar
  5. 5.
    Carnielli, W.A., Sette, A.M.: Default operators. In: Workshop on Logic, Language, Information and Computation, WOLLIC 1994, UFPE, Recife (1994)Google Scholar
  6. 6.
    Carnielli, W.A., Veloso, P.A.S.: Ultrafilter logic and generic reasoning. In: Gottlob, et al. (eds.) [12], pp. 34–53Google Scholar
  7. 7.
    Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press (1980)Google Scholar
  8. 8.
    Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthése Library, vol. 277. Kluwer Academic Publishers (1998)Google Scholar
  9. 9.
    Fitting, M.C.: Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co., Dordrecht (1983)Google Scholar
  10. 10.
    Gabbay, D.M., Woods, J. (eds.): Logic and the Modalities in the Twentieth Century. Handbook of the History of Logic, vol. 7. North-Holland (2006)Google Scholar
  11. 11.
    Gochet, P., Gribomont, P.: Epistemic logic. Gabbay and Woods [10], vol. 7, pp. 99–195 (2006)Google Scholar
  12. 12.
    Gottlob, G., Leitsch, A., Mundici, D. (eds.): KGC 1997. LNCS, vol. 1289. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  13. 13.
    Halpern, J.: The relationship between knowledge, belief and certainty. Annals of Mathematics and Artificial Intelligence 4, 301–322 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Halpern, J., Samet, D., Segev, E.: Defining knowledge in terms of belief: The modal logic perspective. Review of Symbolic Logic (to appear)Google Scholar
  15. 15.
    Herzig, A.: Modal probability, belief, and actions. Fundamenta Informaticae 57(2-4), 323–344 (2003)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)Google Scholar
  17. 17.
    Jauregui, V.: Modalities, Conditionals and Nonmonotonic Reasoning. PhD thesis, Department of Computer Science and Engineering, University of New South Wales (2008)Google Scholar
  18. 18.
    Kaminski, M., Tiomkin, M.L.: The modal logic of cluster-decomposable kripke interpretations. Notre Dame Journal of Formal Logic 48(4), 511–520 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Koutras, C.D., Moyzes, C., Nomikos, C., Zikos, Y.: On the ‘in many cases’ modality: tableaux, decidability, complexity, variants. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 207–220. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Koutras, C.D., Moyzes, C., Zikos, Y.: A modal logic of Knowledge, Belief and Estimation. Technical report, Graduate Programme in Algorithms and Computation (2014) (available through the authors’ webpages)Google Scholar
  21. 21.
    Koutras, C.D., Zikos, Y.: A note on the completeness of S4.2. Technical report, 2013, Graduate Programme in Logic, Algorithms and Computation (December 2013)Google Scholar
  22. 22.
    Lenzen, W.: Recent Work in Epistemic Logic. North-Holland (1978)Google Scholar
  23. 23.
    Lenzen, W.: Epistemologische Betrachtungen zu [S4,S5]. Erkenntnis 14, 33–56 (1979)CrossRefGoogle Scholar
  24. 24.
    Pacuit, E.: Dynamic epistemic logic I: Modeling knowledge and belief. Philosophy Compass 8(9), 798–814 (2013)CrossRefGoogle Scholar
  25. 25.
    Schlechta, K.: Defaults as generalized quantifiers. Journal of Logic and Computation 5(4), 473–494 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stalnaker, R.: On logics of knowledge and belief. Philosophical Studies 128(1), 169–199 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Costas D. Koutras
    • 1
  • Christos Moyzes
    • 2
  • Yorgos Zikos
    • 2
  1. 1.Department of Informatics and TelecommunicationsUniversity of PeloponneseTripolisGreece
  2. 2.Graduate Programme in Logic, Algorithms and Computation (MPLA) Department of MathematicsUniversity of AthensIlissiaGreece

Personalised recommendations